An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan
An Immersive Virtual Reality Environment for Diagnostic Imaging
Inter-site and Inter-scanner Diffusion MRI Data Harmonization
The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort
Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability
Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis
Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography
Estimation of Bounded and Unbounded Trajectories in Diffusion MRI
Principal Gradient of Macroscale Cortical Organization
Slide 10
Evolution of a Simultaneous Segmentation and Atlas Registration
Multi-modality MRI-based Atlas of the Brain
Intracranial Fluid Redistribution
Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers
Automated White Matter Fiber Tract Identification in Patients with Brain Tumors
State-space Models of Mental Processes from fMRI
Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach
Tractography-driven Groupwise Multi-Scale Parcellation of the Cortex
Gray Matter Alterations in Early Aging
Statistical Shape Analysis: From Landmarks to Diffeomorphisms
A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation
Joint Modeling of Imaging and Genetic Variability
MR-Ultrasound Fusion for Neurosurgery
Diffusion MRI and Tumor Heterogeneity
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research

Neuroimage Analysis Center

The Neuroimaging Analysis Center is a research and technology center with the mission of advancing the role of neuroimaging in health care. The ability to access huge cohorts of patient medical records and radiology data, the emergence of ever-more detailed imaging modalities, and the availability of unprecedented computer processing power marks the possibility for a new era in neuroimaging, disease understanding, and patient treatment. We are excited to present a national resource center with the goal of finding new ways of extracting disease characteristics from advanced imaging and computation, and to make these methods available to the larger medical community through a proven methodology of world-class research, open-source software, and extensive collaboration.

Our Sponsor

The NAC is a Biomedical Technology Resource Center supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (P41 EB015902). It was supported by the National Center for Research Resources (NCRR) (P41 RR13218) through December 2011.

Contact the Center Directors

Carl-Fredrik Westin, PhD
Laboratory of Mathematics in Imaging
Brigham and Women's Hospital
1249 Boylston St., Room 240
Boston, MA 02215
Phone: +1 617 525-6209
E-mail: westin at bwh.harvard.edu
 

Ron Kikinis, MD
Surgical Planning Laboratory 
Brigham and Women's Hospital 
75 Francis St, L1 Room 050
Boston, MA 02115
Phone: +1 617 732-7389
E-mail: kikinis at bwh.harvard.edu
 

 

Recent Publications

  • Pohl KM, Fisher J, Kikinis R, Grimson EL, Wells WM. Shape Based Segmentation of Anatomical Structures in Magnetic Resonance Images. Comput Vis Biomed Image Appl. 2005;3765:489–98.

    Standard image based segmentation approaches perform poorly when there is little or no contrast along boundaries of different regions. In such cases, segmentation is largely performed manually using prior knowledge of the shape and relative location of the underlying structures combined with partially discernible boundaries. We present an automated approach guided by covariant shape deformations of neighboring structures, which is an additional source of prior information. Captured by a shape atlas, these deformations are transformed into a statistical model using the logistic function. Structure boundaries, anatomical labels, and image inhomogeneities are estimated simultaneously within an Expectation-Maximization formulation of the maximum a posteriori probability estimation problem. We demonstrate the approach on 20 brain magnetic resonance images showing superior performance, particularly in cases where purely image based methods fail.

  • Golland P, Grimson EL, Shenton ME, Kikinis R. Detection and analysis of statistical differences in anatomical shape. Med Image Anal. 2005;9(1):69–86.
    We present a computational framework for image-based analysis and interpretation of statistical differences in anatomical shape between populations. Applications of such analysis include understanding developmental and anatomical aspects of disorders when comparing patients versus normal controls, studying morphological changes caused by aging, or even differences in normal anatomy, for example, differences between genders. Once a quantitative description of organ shape is extracted from input images, the problem of identifying differences between the two groups can be reduced to one of the classical questions in machine learning of constructing a classifier function for assigning new examples to one of the two groups while making as few misclassifications as possible. The resulting classifier must be interpreted in terms of shape differences between the two groups back in the image domain. We demonstrate a novel approach to such interpretation that allows us to argue about the identified shape differences in anatomically meaningful terms of organ deformation. Given a classifier function in the feature space, we derive a deformation that corresponds to the differences between the two classes while ignoring shape variability within each class. Based on this approach, we present a system for statistical shape analysis using distance transforms for shape representation and the support vector machines learning algorithm for the optimal classifier estimation and demonstrate it on artificially generated data sets, as well as real medical studies.
  • Warfield SK, Haker SJ, Talos IF, Kemper CA, Weisenfeld N, Mewes AUJ, Goldberg-Zimring D, Zou KH, Westin CF, Wells WM III, Tempany CM, Golby A, Black PM, Jolesz FA, Kikinis R. Capturing Intraoperative Deformations: Research Experience at Brigham and Women’s Hospital. Med Image Anal. 2005;9(2):145–62.
    During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient’s brain. Similar challenges are faced in other interventional therapies, such as in cryoablation of the liver, or biopsy of the prostate. We have developed algorithms to model the motion of key anatomical structures and system implementations that enable us to estimate the deformation of the critical anatomy from sequences of volumetric images and to prepare updated fused visualizations of preoperative and intraoperative images at a rate compatible with surgical decision making. This paper reviews the experience at Brigham and Women’s Hospital through the process of developing and applying novel algorithms for capturing intraoperative deformations in support of image guided therapy.
  • Estepar RSJ, Kubicki M, Shenton M, Westin CF. A kernel-based approach for user-guided fiber bundling using diffusion tensor data. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2626–9.
    This paper describes a novel user-guided method for grouping fibers from diffusion tensor MRI tractography into bundles. The method finds fibers, that passing through user-defined ROIs, still fit to the underlying data model given by the diffusion tensor. This is achieved by filtering the data and the ROIs with a kernel derived from a geodesic metric between tensors. A standard approach using binary decisions defining tracts passing through ROIs is critically dependent on ROIs that includes all trace lines of interest. The method described in this paper uses a softer decision mechanism through a kernel which enables grouping of bundles driven less exact, or even single point, ROIs. The method analyzes the responses obtained from the convolution with a kernel function along the fiber with the ROI data. Results in real data shows the feasibility of the approach to fiber bundling.
  • Yang Y, George S, Martin DR, Tannenbaum AR, Giddens DP. 3D modeling of patient-specific geometries of portal veins using MR images. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5290–3.
    In this note, we present an approach for developing patient-specific 3D models of portal veins to provide geometric boundary conditions for computational fluid dynamics (CFD) simulations of the blood flow inside portal veins. The study is based on MRI liver images of individual patients to which we apply image registration and segmentation techniques and inlet and outlet velocity profiles acquired using PC-MRI in the same imaging session. The portal vein and its connected veins are then extracted and visualized in 3D as surfaces. Image registration is performed to align shifted images between each breath-hold when the MRI images are acquired. The image segmentation method first labels each voxel in the 3D volume of interest by using a Bayesian probability approach, and then isolates the portal veins via active surfaces initialized inside the vessel. The method was tested with two healthy volunteers. In both cases, the main portal vein and its connected veins were successfully modeled and visualized.