An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan
An Immersive Virtual Reality Environment for Diagnostic Imaging
Inter-site and Inter-scanner Diffusion MRI Data Harmonization
The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort
Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability
Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis
Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography
Estimation of Bounded and Unbounded Trajectories in Diffusion MRI
Principal Gradient of Macroscale Cortical Organization
Slide 10
Evolution of a Simultaneous Segmentation and Atlas Registration
Multi-modality MRI-based Atlas of the Brain
Intracranial Fluid Redistribution
Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers
Automated White Matter Fiber Tract Identification in Patients with Brain Tumors
State-space Models of Mental Processes from fMRI
Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach
Tractography-driven Groupwise Multi-Scale Parcellation of the Cortex
Gray Matter Alterations in Early Aging
Statistical Shape Analysis: From Landmarks to Diffeomorphisms
A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation
Joint Modeling of Imaging and Genetic Variability
MR-Ultrasound Fusion for Neurosurgery
Diffusion MRI and Tumor Heterogeneity
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research

Neuroimage Analysis Center

The Neuroimaging Analysis Center is a research and technology center with the mission of advancing the role of neuroimaging in health care. The ability to access huge cohorts of patient medical records and radiology data, the emergence of ever-more detailed imaging modalities, and the availability of unprecedented computer processing power marks the possibility for a new era in neuroimaging, disease understanding, and patient treatment. We are excited to present a national resource center with the goal of finding new ways of extracting disease characteristics from advanced imaging and computation, and to make these methods available to the larger medical community through a proven methodology of world-class research, open-source software, and extensive collaboration.

Our Sponsor

The NAC is a Biomedical Technology Resource Center supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (P41 EB015902). It was supported by the National Center for Research Resources (NCRR) (P41 RR13218) through December 2011.

Contact the Center Directors

Carl-Fredrik Westin, PhD
Laboratory of Mathematics in Imaging
Brigham and Women's Hospital
1249 Boylston St., Room 240
Boston, MA 02215
Phone: +1 617 525-6209
E-mail: westin at bwh.harvard.edu
 

Ron Kikinis, MD
Surgical Planning Laboratory 
Brigham and Women's Hospital 
75 Francis St, L1 Room 050
Boston, MA 02115
Phone: +1 617 732-7389
E-mail: kikinis at bwh.harvard.edu
 

 

Recent Publications

  • Tsai A, Wells WM III, Warfield SK, Willsky AS. An EM Algorithm for Shape Classification Based on Level Sets. Med Image Anal. 2005;9(5):491–502.
    In this paper, we propose an expectation-maximization (EM) approach to separate a shape database into different shape classes, while simultaneously estimating the shape contours that best exemplify each of the different shape classes. We begin our formulation by employing the level set function as the shape descriptor. Next, for each shape class we assume that there exists an unknown underlying level set function whose zero level set describes the contour that best represents the shapes within that shape class. The level set function for each example shape in the database is modeled as a noisy measurement of the appropriate shape class’s unknown underlying level set function. Based on this measurement model and the judicious introduction of the class labels as the hidden data, our EM formulation calculates the labels for shape classification and estimates the shape contours that best typify the different shape classes. This resulting iterative algorithm is computationally efficient, simple, and accurate. We demonstrate the utility and performance of this algorithm by applying it to two medical applications.
  • Brehmer A, Lindig TM, Schrödl F, Neuhuber W, Ditterich D, Rexer M, Rupprecht H. Morphology of enkephalin-immunoreactive myenteric neurons in the human gut. Histochem Cell Biol. 2005;123(2):131–8.
    The aim of this study was the morphological and further chemical characterisation of neurons immunoreactive for leu-enkephalin (leuENK). Ten wholemounts of small and large intestinal segments from nine patients were immunohistochemically triple-stained for leuENK/neurofilament 200 (NF)/substance P (SP). Based on their simultaneous NF-reactivity and 3D reconstruction of single NF-reactive cells, 97.5% of leuENK-positive neurons displayed the appearance of stubby neurons: small somata; short, stubby dendrites and one axon. Of these leuENK-reactive stubby neurons, 91.3% did not display co-reactivity for SP whereas 8.7% were SP-co-reactive. As to their axonal projection pattern, 50.4% of the recorded leuENK stubby neurons had axons running orally whereas in 29.4% they ran anally; the directions of the remaining 20.2% could not be determined. No axons were seen to enter into secondary strands of the myenteric plexus. Somal area measurements revealed clearly smaller somata of leuENK-reactive stubby neurons (between 259+/-47 microm(2) and 487+/-113 microm(2)) than those of putative sensory type II neurons (between 700+/-217 microm(2) and 1,164+/-396 microm(2)). The ratio dendritic field area per somal area of leuENK-reactive stubby neurons was between 2.0 and 2.8 reflecting their short dendrites. Additionally, we estimated the proportion of leuENK-positive neurons in comparison to the putative whole myenteric neuron population in four leuENK/anti-Hu doublestained wholemounts. This proportion ranged between 5.9% and 8.3%. We suggest leuENK-reactive stubby neurons to be muscle motor neurons and/or ascending interneurons. Furthermore, we explain why we do not use the term "Dogiel type I neurons" for this population.
  • Wolfson L, Wei X, Hall CB, Panzer V, Wakefield D, Benson RR, Schmidt JA, Warfield SK, Guttmann CRG. Accrual of MRI white matter abnormalities in elderly with normal and impaired mobility. J Neurol Sci. 2005;232(1-2):23–7.
    White matter signal abnormality (WMSA) is often present in the MRIs of older persons with mobility impairment. We examined the relationship between impaired mobility and the progressive accrual of WMSA. Mobility was assessed with the Short Physical Performance Battery (SPPB) and quantitative measures of gait and balance. Fourteen subjects had baseline and follow-up MRI scans performed 20 months apart. WMSA was detected and quantified using automated computer algorithms. In the control subjects, WMSA volume increased by 0.02+/-0.05% ICCV (percent intracranial cavity volume)/year while the WMSA of mobility impaired subjects increased five-times faster (0.10+/-0.10 ICCV/year, p=0.03). WMSA volume was related to some of the mobility measures and was sensitive to change which was not true of the other MRI variables. The study demonstrates the sensitivity of longitudinal automated volumetric analysis of WMSA to differentiate differences in the accrual rate of WMSA in groups selected on the basis of mobility. Based on these results, we propose that a subset of subjects with mobility impairment have accelerated, disease related WMSA accrual, thus explaining the rapid progression of mobility impairment in some older persons without apparent cause. This study demonstrates that quantitative MRI and performance measures can provide valuable insight into the rate of progression and pathophysiologic abnormalities underlying mobility impairment.
  • Limperopoulos C, Soul JS, Gauvreau K, Hüppi PS, Warfield SK, Bassan H, Robertson RL, Volpe JJ, Plessis AJ du. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–95.
    OBJECTIVE: Cognitive impairments and academic failure are commonly reported in survivors of preterm birth. Recent studies suggest an important role for the cerebellum in the development of cognitive and social functions. The objective of this study was to examine the impact of prematurity itself, as well as prematurity-related brain injuries, on early postnatal cerebellar growth with quantitative MRI. METHODS: Advanced 3-dimensional volumetric MRI was performed and cerebellar volumes were obtained by manual outlining in preterm (
  • Wiegand LC, Warfield SK, Levitt JJ, Hirayasu Y, Salisbury DF, Heckers S, Bouix S, Schwartz D, Spencer M, Dickey CC, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. An in vivo MRI study of prefrontal cortical complexity in first-episode psychosis. Am J Psychiatry. 2005;162(1):65–70.
    OBJECTIVE: The purpose of this study was to investigate abnormalities in the surface complexity of the prefrontal cortex and in the hemispheric asymmetry of cortical complexity in first-episode patients with schizophrenia.