An Anatomically Curated Fiber Clustering White Matter Atlas for Consistent White Matter Tract Parcellation across the Lifespan
An Immersive Virtual Reality Environment for Diagnostic Imaging
Inter-site and Inter-scanner Diffusion MRI Data Harmonization
The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort
Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability
Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis
Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography
Estimation of Bounded and Unbounded Trajectories in Diffusion MRI
Principal Gradient of Macroscale Cortical Organization
Slide 10
Evolution of a Simultaneous Segmentation and Atlas Registration
Multi-modality MRI-based Atlas of the Brain
Intracranial Fluid Redistribution
Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers
Automated White Matter Fiber Tract Identification in Patients with Brain Tumors
State-space Models of Mental Processes from fMRI
Robust Initialization of Active Shape Models for Lung Segmentation in CT Scans: A Feature-Based Atlas Approach
Tractography-driven Groupwise Multi-Scale Parcellation of the Cortex
Gray Matter Alterations in Early Aging
Statistical Shape Analysis: From Landmarks to Diffeomorphisms
A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation
Joint Modeling of Imaging and Genetic Variability
MR-Ultrasound Fusion for Neurosurgery
Diffusion MRI and Tumor Heterogeneity
SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research

Neuroimage Analysis Center

The Neuroimaging Analysis Center is a research and technology center with the mission of advancing the role of neuroimaging in health care. The ability to access huge cohorts of patient medical records and radiology data, the emergence of ever-more detailed imaging modalities, and the availability of unprecedented computer processing power marks the possibility for a new era in neuroimaging, disease understanding, and patient treatment. We are excited to present a national resource center with the goal of finding new ways of extracting disease characteristics from advanced imaging and computation, and to make these methods available to the larger medical community through a proven methodology of world-class research, open-source software, and extensive collaboration.

Our Sponsor

The NAC is a Biomedical Technology Resource Center supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) (P41 EB015902). It was supported by the National Center for Research Resources (NCRR) (P41 RR13218) through December 2011.

Contact the Center Directors

Carl-Fredrik Westin, PhD
Laboratory of Mathematics in Imaging
Brigham and Women's Hospital
1249 Boylston St., Room 240
Boston, MA 02215
Phone: +1 617 525-6209
E-mail: westin at bwh.harvard.edu
 

Ron Kikinis, MD
Surgical Planning Laboratory 
Brigham and Women's Hospital 
75 Francis St, L1 Room 050
Boston, MA 02115
Phone: +1 617 732-7389
E-mail: kikinis at bwh.harvard.edu
 

 

Recent Publications

  • Talos IF, Zou KH, Ohno-Machado L, Bhagwat JG, Kikinis R, Black PM, Jolesz FA. Supratentorial low-grade glioma resectability: statistical predictive analysis based on anatomic MR features and tumor characteristics. Radiology. 2006;239(2):506–13.
    PURPOSE: To retrospectively assess the main variables that affect the complete magnetic resonance (MR) imaging-guided resection of supratentorial low-grade gliomas. MATERIALS AND METHODS: Institutional review board approval was obtained for this retrospective HIPAA-compliant study, with the requirement for informed consent waived. Data from 101 patients (61 men, 40 women; mean age, 39 years; age range, 18-72 years) who had nonenhancing supratentorial mass lesions that were histopathologically diagnosed as low-grade (World Health Organization grade II) gliomas and consecutively underwent surgery with intraoperative MR imaging guidance were analyzed. There were 21 low-grade astrocytomas, 64 oligodendrogliomas, and 16 mixed oligoastrocytomas. Initial and residual tumor volumes were measured on intraoperative T2-weighted MR images and three-dimensional spoiled gradient-echo MR images. The anatomic relationships between the tumor and eloquent cortical and/or subcortical regions and the influence of these relationships on the extent of resection were analyzed on the basis of preoperative MR imaging findings. Summary measures, univariate Fisher exact test and t test, and multivariate logistic regression analyses were performed.
  • Archip N, Rohling R, Dessenne V, Erard PJ, Nolte LP. Anatomical structure modeling from medical images. Comput Methods Programs Biomed. 2006;82(3):203–15.
    Some clinical applications, such as surgical planning, require volumetric models of anatomical structures represented as a set of tetrahedra. A practical method of constructing anatomical models from medical images is presented. The method starts with a set of contours segmented from the medical images by a clinician and produces a model that has high fidelity with the contours. Unlike most modeling methods, the contours are not restricted to lie on parallel planes. The main steps are a 3D Delaunay tetrahedralization, culling of non-object tetrahedra, and refinement of the tetrahedral mesh. The result is a high-quality set of tetrahedra whose surface points are guaranteed to match the original contours. The key is to use the distance map and bit volume structures that were created along with the contours. The method is demonstrated on computed tomography, MRI and 3D ultrasound data. Models of 170,000 tetrahedra are constructed on a standard workstation in approximately 10s. A comparison with related methods is also provided.
  • Wu Y, Warfield SK, Tan L, Wells WM, Meier DS, van Schijndel RA, Barkhof F, Guttmann CRG. Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. Neuroimage. 2006;32(3):1205–15.
    PURPOSE: To automatically segment multiple sclerosis (MS) lesions into three subtypes (i.e., enhancing lesions, T1 "black holes", T2 hyperintense lesions). MATERIALS AND METHODS: Proton density-, T2- and contrast-enhanced T1-weighted brain images of 12 MR scans were pre-processed through intracranial cavity (IC) extraction, inhomogeneity correction and intensity normalization. Intensity-based statistical k-nearest neighbor (k-NN) classification was combined with template-driven segmentation and partial volume artifact correction (TDS+) for segmentation of MS lesions subtypes and brain tissue compartments. Operator-supervised tissue sampling and parameter calibration were performed on 2 randomly selected scans and were applied automatically to the remaining 10 scans. Results from this three-channel TDS+ (3ch-TDS+) were compared to those from a previously validated two-channel TDS+ (2ch-TDS+) method. The results of both the 3ch-TDS+ and 2ch-TDS+ were also compared to manual segmentation performed by experts.
  • Dambreville S, Rathi Y, Tannenbaum A. Shape-Based Approach to Robust Image Segmentation using Kernel PCA. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2006;:977–984.
    Segmentation involves separating an object from the background. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, within the level-set framework. Following the work of Leventon et al., we revisit the use of principal component analysis (PCA) to introduce prior knowledge about shapes in a more robust manner. To this end, we utilize Kernel PCA and show that this method of learning shapes outperforms linear PCA, by allowing only shapes that are close enough to the training data. In the proposed segmentation algorithm, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description allows to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, clutter, partial occlusions, or smearing.
  • Dimaio SP, Kacher DF, Ellis RE, Fichtinger G, Hata N, Zientara GP, Panych LP, Kikinis R, Jolesz FA. Needle Artifact Localization in 3T MR Images. Stud Health Technol Inform. 2006;119:120–5.
    This work explores an image-based approach for localizing needles during MRI-guided interventions, for the purpose of tracking and navigation. Susceptibility artifacts for several needles of varying thickness were imaged, in phantoms, using a 3 tesla MRI system, under a variety of conditions. The relationship between the true needle positions and the locations of artifacts within the images, determined both by manual and automatic segmentation methods, have been quantified and are presented here.