Publications by Year: 2007


Kindlmann G, Ennis DB, Whitaker RT, Westin CF. Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Trans Med Imaging. 2007;26(11):1483–99.
Guided by empirically established connections between clinically important tissue properties and diffusion tensor parameters, we introduce a framework for decomposing variations in diffusion tensors into changes in shape and orientation. Tensor shape and orientation both have three degrees-of-freedom, spanned by invariant gradients and rotation tangents, respectively. As an initial demonstration of the framework, we create a tunable measure of tensor difference that can selectively respond to shape and orientation. Second, to analyze the spatial gradient in a tensor volume (a third-order tensor), our framework generates edge strength measures that can discriminate between different neuroanatomical boundaries, as well as creating a novel detector of white matter tracts that are adjacent yet distinctly oriented. Finally, we apply the framework to decompose the fourth-order diffusion covariance tensor into individual and aggregate measures of shape and orientation covariance, including a direct approximation for the variance of tensor invariants such as fractional anisotropy.
Larsen S, Kikinis R, Talos IF, Weinstein D, Wells W, Golby A. Quantitative comparison of functional MRI and direct electrocortical stimulation for functional mapping. Int J Med Robot. 2007;3(3):262–70.
BACKGROUND: Mapping functional areas of the brain is important for planning tumour resections. With the increased use of functional magnetic resonance imaging (fMRI) for presurgical planning, there is a need to validate that fMRI activation mapping is consistent with the mapping obtained during surgery using direct electrocortical stimulation (DECS). METHODS: A quantitative comparison of DECS and fMRI mapping techniques was performed, using a patient-specific conductivity model to find the current distribution resulting from each stimulation site. The resulting DECS stimulation map was compared to the fMRI activation map, using the maximal Dice similarity coefficient (MDSC). RESULTS: Our results show some agreement between these two mapping techniques—the stimulation site with the largest MOSC was the only site that demonstrated intra-operative effect. CONCLUSIONS: There is a substantial effort to improve the techniques used to map functional areas, particularly using fMRI. It seems likely that fMRI will eventually provide a valid non-invasive means for functional mapping.
Pohl KM, Fisher J, Bouix S, Shenton M, McCarley RW, Grimson EL, Kikinis R, Wells WM. Using the logarithm of odds to define a vector space on probabilistic atlases. Med Image Anal. 2007;11(5):465–77.
The logarithm of the odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures.
Maddah M, Wells WM, Warfield SK, Westin CF, Grimson EL. Probabilistic clustering and quantitative analysis of white matter fiber tracts. Inf Process Med Imaging. 2007;20:372–83.
A novel framework for joint clustering and point-by-point mapping of white matter fiber pathways is presented. Accurate clustering of the trajectories into fiber bundles requires point correspondence determined along the fiber pathways. This knowledge is also crucial for any tract-oriented quantitative analysis. We employ an expectation-maximization (EM) algorithm to cluster the trajectories in a Gamma mixture model context. The result of clustering is the probabilistic assignment of the fiber trajectories to each cluster, an estimate of the cluster parameters, and point correspondences along the trajectories. Point-by-point correspondence of the trajectories within a bundle is obtained by constructing a distance map and a label map from each cluster center at every iteration of the EM algorithm. This offers a time-efficient alternative to pairwise curve matching of all trajectories with respect to each cluster center. Probabilistic assignment of the trajectories to clusters is controlled by imposing a minimum threshold on the membership probabilities, to remove outliers in a principled way. The presented results confirm the efficiency and effectiveness of the proposed framework for quantitative analysis of diffusion tensor MRI.
Hershkovits E, Tannenbaum A, Tannenbaum R. Polymer Adsorption on Curved Surfaces: A Geometric Approach. J Phys Chem C Nanomater Interfaces. 2007;111(33):12369–12375.
In this article, we have developed a simple model that describes the adsorption of polymer chains from a solution having a good solvent onto a reactive surface of varying curvatures. In order to evaluate the impact of particle size on the adsorption process, we have probed the adsorption of poly(methyl methacrylate) (PMMA) on aluminum oxide (Al2O3) surfaces belonging to particles of different sizes. The basic approach assumed that the details of the chemisorption mechanism of PMMA on aluminum oxide surfaces are independent of surface curvature. The combination of the experimental results with the theoretical approach that we have developed show the existence of three different regimes of adsorption of polymer chains onto the surfaces of metal nanoparticles.
Pohl KM, Bouix S, Nakamura M, Rohlfing T, McCarley RW, Kikinis R, Grimson EL, Shenton ME, Wells WM. A hierarchical algorithm for MR brain image parcellation. IEEE Trans Med Imaging. 2007;26(9):1201–12.
We introduce an algorithm for segmenting brain magnetic resonance (MR) images into anatomical compartments such as the major tissue classes and neuro-anatomical structures of the gray matter. The algorithm is guided by prior information represented within a tree structure. The tree mirrors the hierarchy of anatomical structures and the subtrees correspond to limited segmentation problems. The solution to each problem is estimated via a conventional classifier. Our algorithm can be adapted to a wide range of segmentation problems by modifying the tree structure or replacing the classifier. We evaluate the performance of our new segmentation approach by revisiting a previously published statistical group comparison between first-episode schizophrenia patients, first-episode affective psychosis patients, and comparison subjects. The original study is based on 50 MR volumes in which an expert identified the brain tissue classes as well as the superior temporal gyrus, amygdala, and hippocampus. We generate analogous segmentations using our new method and repeat the statistical group comparison. The results of our analysis are similar to the original findings, except for one structure (the left superior temporal gyrus) in which a trend-level statistical significance (p = 0.07) was observed instead of statistical significance.
Zöllei L, Jenkinson M, Timoner S, Wells WM III. A Marginalized MAP Approach and EM Optimization for Pair-wise Registration. Inf Process Med Imaging. 2007;20:662–74.
We formalize the pair-wise registration problem in a maximum a posteriori (MAP) framework that employs a multinomial model of joint intensities with parameters for which we only have a prior distribution. To obtain an MAP estimate of the aligning transformation alone, we treat the multinomial parameters as nuisance parameters, and marginalize them out. If the prior on those is uninformative, the marginalization leads to registration by minimization of joint entropy. With an informative prior, the marginalization leads to minimization of the entropy of the data pooled with pseudo observations from the prior. In addition, we show that the marginalized objective function can be optimized by the Expectation-Maximization (EM) algorithm, which yields a simple and effective iteration for solving entropy-based registration problems. Experimentally, we demonstrate the effectiveness of the resulting EM iteration for rapidly solving a challenging intra-operative registration problem.
Kindlmann G, Tricoche X, Westin CF. Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Med Image Anal. 2007;11(5):492–502.
Geometric models of white matter architecture play an increasing role in neuroscientific applications of diffusion tensor imaging, and the most popular method for building them is fiber tractography. For some analysis tasks, however, a compelling alternative may be found in the first and second derivatives of diffusion anisotropy. We extend to tensor fields the notion from classical computer vision of ridges and valleys, and define anisotropy creases as features of locally extremal tensor anisotropy. Mathematically, these are the loci where the gradient of anisotropy is orthogonal to one or more eigenvectors of its Hessian. We propose that anisotropy creases provide a basis for extracting a skeleton of the major white matter pathways, in that ridges of anisotropy coincide with interiors of fiber tracts, and valleys of anisotropy coincide with the interfaces between adjacent but distinctly oriented tracts. The crease extraction algorithm we present generates high-quality polygonal models of crease surfaces, which are further simplified by connected-component analysis. We demonstrate anisotropy creases on measured diffusion MRI data, and visualize them in combination with tractography to confirm their anatomic relevance.
DiMaio S, Kapur T, Cleary K, Aylward S, Kazanzides P, Vosburgh K, Ellis R, Duncan J, Farahani K, Lemke H, Peters T, Lorensen WB, Gobbi D, Haller J, Clarke LL, Pizer S, Taylor R, Galloway R, Fichtinger G, Hata N, Lawson K, Tempany CM, Kikinis R, Jolesz FA. Challenges in Image-guided Therapy System Design. Neuroimage. 2007;37 Suppl 1:144–51.
System development for image-guided therapy (IGT), or image-guided interventions (IGI), continues to be an area of active interest across academic and industry groups. This is an emerging field that is growing rapidly: major academic institutions and medical device manufacturers have produced IGT technologies that are in routine clinical use, dozens of high-impact publications are published in well regarded journals each year, and several small companies have successfully commercialized sophisticated IGT systems. In meetings between IGT investigators over the last two years, a consensus has emerged that several key areas must be addressed collaboratively by the community to reach the next level of impact and efficiency in IGT research and development to improve patient care. These meetings culminated in a two-day workshop that brought together several academic and industrial leaders in the field today. The goals of the workshop were to identify gaps in the engineering infrastructure available to IGT researchers, develop the role of research funding agencies and the recently established US-based National Center for Image Guided Therapy (NCIGT), and ultimately to facilitate the transfer of technology among research centers that are sponsored by the National Institutes of Health (NIH). Workshop discussions spanned many of the current challenges in the development and deployment of new IGT systems. Key challenges were identified in a number of areas, including: validation standards; workflows, use-cases, and application requirements; component reusability; and device interface standards. This report elaborates on these key points and proposes research challenges that are to be addressed by a joint effort between academic, industry, and NIH participants.
Yu P, Yeo BTT, Grant E, Fischl B, Golland P. Cortical Folding Development Study based on Over-Complete Spherical Wavelets. Proc IEEE Int Conf Comput Vis. 2007;2007.
We introduce the use of over-complete spherical wavelets for shape analysis of 2D closed surfaces. Bi-orthogonal spherical wavelets have been shown to be powerful tools in the segmentation and shape analysis of 2D closed surfaces, but unfortunately they suffer from aliasing problems and are therefore not invariant under rotations of the underlying surface parameterization. In this paper, we demonstrate the theoretical advantage of over-complete wavelets over bi-orthogonal wavelets and illustrate their utility on both synthetic and real data. In particular, we show that over-complete spherical wavelets allow us to build more stable cortical folding development models, and detect a wider array of regions of folding development in a newborn dataset.