More accurate neuronavigation data provided by biomechanical modeling instead of rigid registration

Garlapati RR, Roy A, Joldes GR, Wittek A, Mostayed A, Doyle B, Warfield SK, Kikinis R, Knuckey N, Bunt S, Miller K. More accurate neuronavigation data provided by biomechanical modeling instead of rigid registration. J Neurosurg. 2014;120(6):1477–83.

Abstract

It is possible to improve neuronavigation during image-guided surgery by warping the high-quality preoperative brain images so that they correspond with the current intraoperative configuration of the brain. In this paper, the accuracy of registration results obtained using comprehensive biomechanical models is compared with the accuracy of rigid registration, the technology currently available to patients. This comparison allows investigation into whether biomechanical modeling provides good-quality image data for neuronavigation for a larger proportion of patients than rigid registration. Preoperative images for 33 neurosurgery cases were warped onto their respective intraoperative configurations using both the biomechanics-based method and rigid registration. The Hausdorff distance-based evaluation process, which measures the difference between images, was used to quantify the performance of both registration methods. A statistical test for difference in proportions was conducted to evaluate the null hypothesis that the proportion of patients for whom improved neuronavigation can be achieved is the same for rigid and biomechanics-based registration. The null hypothesis was confidently rejected (p
Last updated on 02/24/2023