Publications

2013

Batmanghelich NK, Dalca A V, Sabuncu MR, Polina G, . Joint Modeling of Imaging and Genetics. Inf Process Med Imaging. 2013;23:766–77.

We propose a unified Bayesian framework for detecting genetic variants associated with a disease while exploiting image-based features as an intermediate phenotype. Traditionally, imaging genetics methods comprise two separate steps. First, image features are selected based on their relevance to the disease phenotype. Second, a set of genetic variants are identified to explain the selected features. In contrast, our method performs these tasks simultaneously to ultimately assign probabilistic measures of relevance to both genetic and imaging markers. We derive an efficient approximate inference algorithm that handles high dimensionality of imaging genetic data. We evaluate the algorithm on synthetic data and show that it outperforms traditional models. We also illustrate the application of the method on ADNI data.

Tunç B, Smith AR, Wasserman D, Pennec X, Wells WM III, Verma R, Pohl KM. Multinomial Probabilistic Fiber Representation for Connectivity Driven Clustering. Inf Process Med Imaging. 2013;23:730–41.

The clustering of fibers into bundles is an important task in studying the structure and function of white matter. Existing technology mostly relies on geometrical features, such as the shape of fibers, and thus only provides very limited information about the neuroanatomical function of the brain. We advance this issue by proposing a multinomial representation of fibers decoding their connectivity to gray matter regions. We then simplify the clustering task by first deriving a compact encoding of our representation via the logit transformation. Furthermore, we define a distance between fibers that is in theory invariant to parcellation biases and is equivalent to a family of Riemannian metrics on the simplex of multinomial probabilities. We apply our method to longitudinal scans of two healthy subjects showing high reproducibility of the resulting fiber bundles without needing to register the corresponding scans to a common coordinate system. We confirm these qualitative findings via a simple statistical analyse of the fiber bundles.

Sridharan R, Dalca A V, Fitzpatrick KM, Cloonan L, Kanakis A, Wu O, Furie KL, Rosand J, Rost NS, Golland P. Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke. Multimodal Brain Image Anal (2013). 2013;8159:18–30.

We present an analysis framework for large studies of multimodal clinical quality brain image collections. Processing and analysis of such datasets is challenging due to low resolution, poor contrast, mis-aligned images, and restricted field of view. We adapt existing registration and segmentation methods and build a computational pipeline for spatial normalization and feature extraction. The resulting aligned dataset enables clinically meaningful analysis of spatial distributions of relevant anatomical features and of their evolution with age and disease progression. We demonstrate the approach on a neuroimaging study of stroke with more than 800 patients. We show that by combining data from several modalities, we can automatically segment important biomarkers such as white matter hyperintensity and characterize pathology evolution in this heterogeneous cohort. Specifically, we examine two sub-populations with different dynamics of white matter hyperintensity changes as a function of patients’ age. Pipeline and analysis code is available at http://groups.csail.mit.edu/vision/medical-vision/stroke/.

Toews M, Zöllei L, Wells WM III. Feature-based Alignment of Volumetric Multi-modal Images. Inf Process Med Imaging. 2013;23:25–36.

This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology.

Rathi Y, Gagoski B, Setsompop K, Grant E, Carl-Fredrik W. Comparing Simultaneous Multi-slice Diffusion Acquisitions. Int Conf Med Image Comput Comput Assist Interv. 2013;16(WS):105–14.

Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-invasive investigation of the neural architecture of the brain. Advanced dMRI protocols typically require a large number of measurements for accurately tracing the fiber bundles and estimating the diffusion properties (such as, FA). However, the acquisition time of these sequences is prohibitively large for pediatric as well as patients with certain types of brain disorders (such as, dementia). Thus, fast echo-planar imaging (EPI) acquisition sequences were proposed by the authors in [6, 16], which acquired multiple slices simultaneously to reduce scan time. The scan time in such cases drops proportionately to the number of simultaneous slice acquisitions (which we denote by R). While preliminary results in [6, 16] showed good reproducibility, yet the effect of simultaneous acquisitions on long range fiber connectivity and diffusion measures such as FA, is not known. In this work, we use multi-tensor based fiber connectivity to compare data acquired on two subjects with different acceleration factors (R = 1, 2, 3). We investigate and report the reproducibility of fiber bundles and diffusion measures between these scans on two subjects with different spatial resolutions, which is quite useful while designing neuroimaging studies.

Toews M, Golby AJ, Wells WM III. Inter-slice Correspondence for 2D Ultrasound-guided Procedures. Int Conf Med Image Comput Comput Assist Interv. Workshop on Clinical Image-based Procedures: Transitional Research in Medical Imaging. 2013;16(WS).

This paper reports on a new computational methodology, inter-slice correspondence (ISC), for robustly aligning sets of 2D ultrasound (US) slices during image-guided medical procedures. Correspondences are derived from distinctive, local scale-invariant features, which are used in one-to-many matching of US slices in near real-time despite out-of-plane rotation, in addition to global in-plane similarity transforms, occlusion, missing tissue, US plane mirroring, changes in US probe depth settings. Experiments demonstrate that ISC can align manually-acquired US slices without probe tracking information in the context of image-guided neurosurgery, with an accuracy of 1.3mm. A novel reconstruction-without-calibration application based on ISC is proposed, where 3D US reconstruction results are very similar to those obtained via traditional phantom-based calibration.

Rathi Y, Niethammer M, Laun F, Setsompop K, Michailovich O V, Grant E, Carl-Fredrik W. Diffusion Propagator Estimation using Radial Basis Functions. Int Conf Med Image Comput Comput Assist Interv. 2013;16(WS):161–70.

The average diffusion propagator (ADP) obtained from diffusion MRI (dMRI) data encapsulates important structural properties of the underlying tissue. Measures derived from the ADP can be potentially used as markers of tissue integrity in characterizing several mental disorders. Thus, accurate estimation of the ADP is imperative for its use in neuroimaging studies. In this work, we propose a simple method for estimating the ADP by representing the acquired diffusion signal in the entire q-space using radial basis functions (RBF). We demonstrate our technique using two different RBF’s (generalized inverse multiquadric and Gaussian) and derive analytical expressions for the corresponding ADP’s. We also derive expressions for computing the solid angle orientation distribution function (ODF) for each of the RBF’s. Estimation of the weights of the RBF’s is done by enforcing positivity constraint on the estimated ADP or ODF. Finally, we validate our method on data obtained from a physical phantom with known fiber crossing of 45 degrees and also show comparison with the solid spherical harmonics method of [7]. We also demonstrate our method on in-vivo human brain data.

Kolesov I, Lee J, Vela P, Tannenbaum A. Stochastic Image Registration with User Constraints. Proc SPIE Int Soc Opt Eng. 2013;8669.
Constrained registration is an active area of research and is the focus of this work. This note describes a non-rigid image registration framework for incorporating landmark constraints. Points that must remain stationary are selected, the user chooses the spatial extent of the inputs, and an automatic step computes the deformable registration, respecting the constraints. Parametrization of the deformation field is by an additive composition of a similarity transformation and a set of Gaussian radial basis functions. The bases’ centers, variances, and weights are determined with a global optimization approach that is introduced. This approach is based on the particle filter for performing constrained optimization; it explores a series of states defining a deformation field that is physically meaningful (i.e., invertible) and prevents chosen points from moving. Results on synthetic two dimensional images are presented.
Liu S, Song Y, Cai W, Pujol S, Kikinis R, Wang X, Feng D. Multifold Bayesian Kernelization in Alzheimer’s Diagnosis. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):303–10.
The accurate diagnosis of Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) is important in early dementia detection and treatment planning. Most of current studies formulate the AD diagnosis scenario as a classification problem and solve it using various machine learners trained with multi-modal biomarkers. However, the diagnosis accuracy is usually constrained by the performance of the machine learners as well as the methods of integrating the multi-modal data. In this study, we propose a novel diagnosis algorithm, the Multifold Bayesian Kernelization (MBK), which models the diagnosis process as a synthesis analysis of multi-modal biomarkers. MBK constructs a kernel for each biomarker that maximizes the local neighborhood affinity, and further evaluates the contribution of each biomarker based on a Bayesian framework. MBK adopts a novel diagnosis scheme that could infer the subject’s diagnosis by synthesizing the output diagnosis probabilities of individual biomarkers. The proposed algorithm, validated using multimodal neuroimaging data from the ADNI baseline cohort with 85 AD, 169 MCI and 77 cognitive normal subjects, achieves significant improvements on all diagnosis groups compared to the state-of-the-art methods.
Lee J, Sandhu R, Tannenbaum A. Particle Filters and Occlusion Handling for Rigid 2D-3D Pose Tracking. Comput Vis Image Underst. 2013;117(8):922–33.
In this paper, we address the problem of 2D-3D pose estimation. Specifically, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose (position and orientation) in 3D space. We revisit a joint 2D segmentation/3D pose estimation technique, and then extend the framework by incorporating a particle filter to robustly track the object in a challenging environment, and by developing an occlusion detection and handling scheme to continuously track the object in the presence of occlusions. In particular, we focus on partial occlusions that prevent the tracker from extracting an exact region properties of the object, which plays a pivotal role for region-based tracking methods in maintaining the track. To this end, a dynamical choice of how to invoke the objective functional is performed online based on the degree of dependencies between predictions and measurements of the system in accordance with the degree of occlusion and the variation of the object’s pose. This scheme provides the robustness to deal with occlusions of an obstacle with different statistical properties from that of the object of interest. Experimental results demonstrate the practical applicability and robustness of the proposed method in several challenging scenarios.