Publications

2020

Ziegler E, Urban T, Brown D, Petts J, Pieper SD, Lewis R, Hafey C, Harris GJ. Open Health Imaging Foundation Viewer: An Extensible Open-Source Framework for Building Web-Based Imaging Applications to Support Cancer Research. JCO Clin Cancer Inform. 2020;4:336–45.
PURPOSE: Zero-footprint Web architecture enables imaging applications to be deployed on premise or in the cloud without requiring installation of custom software on the user’s computer. Benefits include decreased costs and information technology support requirements, as well as improved accessibility across sites. The Open Health Imaging Foundation (OHIF) Viewer is an extensible platform developed to leverage these benefits and address the demand for open-source Web-based imaging applications. The platform can be modified to support site-specific workflows and accommodate evolving research requirements. MATERIALS AND METHODS: The OHIF Viewer provides basic image review functionality (eg, image manipulation and measurement) as well as advanced visualization (eg, multiplanar reformatting). It is written as a client-only, single-page Web application that can easily be embedded into third-party applications or hosted as a standalone Web site. The platform provides extension points for software developers to include custom tools and adapt the system for their workflows. It is standards compliant and relies on DICOMweb for data exchange and OpenID Connect for authentication, but it can be configured to use any data source or authentication flow. Additionally, the user interface components are provided in a standalone component library so that developers can create custom extensions. RESULTS: The OHIF Viewer and its underlying components have been widely adopted and integrated into multiple clinical research platforms (e,g Precision Imaging Metrics, XNAT, LabCAS, ISB-CGC) and commercial applications (eg, Osirix). It has also been used to build custom imaging applications (eg, ProstateCancer.ai, Crowds Cure Cancer [presented as a case study]). CONCLUSION: The OHIF Viewer provides a flexible framework for building applications to support imaging research. Its adoption could reduce redundancies in software development for National Cancer Institute-funded projects, including Informatics Technology for Cancer Research and the Quantitative Imaging Network.
Fennessy FM, Fedorov A, Vangel MG, Mulkern RV, Tretiakova M, Lis RT, Tempany C, Taplin ME. Multiparametric MRI as a Biomarker of Response to Neoadjuvant Therapy for Localized Prostate Cancer-A Pilot Study. Acad Radiol. 2020;27(10):1432–9.
RATIONALE AND OBJECTIVES: To explore a role for multiparametric MRI (mpMRI) as a biomarker of response to neoadjuvant androgen deprivation therapy (ADT) for prostate cancer (PCa). MATERIALS AND METHODS: This prospective study was approved by the institutional review board and was HIPAA compliant. Eight patients with localized PCa had a baseline mpMRI, repeated after 6-months of ADT, followed by prostatectomy. mpMRI indices were extracted from tumor and normal regions of interest (TROI/NROI). Residual cancer burden (RCB) was measured on mpMRI and on the prostatectomy specimen. Paired t-tests compared TROI/NROI mpMRI indices and pre/post-treatment TROI mpMRI indices. Spearman’s rank tested for correlations between MRI/pathology-based RCB, and between pathological RCB and mpMRI indices. RESULTS: At baseline, TROI apparent diffusion coefficient (ADC) was lower and dynamic contrast enhanced (DCE) metrics were higher, compared to NROI (ADC: 806 ± 137 × 10 vs. 1277 ± 213 × 10 mm/sec, p = 0.0005; K: 0.346 ± 0.16 vs. 0.144 ± 0.06 min, p = 0.002; AUC: 0.213 ± 0.08 vs. 0.11 ± 0.03, p = 0.002). Post-treatment, there was no change in TROI ADC, but a decrease in TROI K (0.346 ± 0.16 to 0.188 ± 0.08 min; p = 0.02) and AUC (0.213 ± 0.08 to 0.13 ± 0.06; p = 0.02). Tumor volume decreased with ADT. There was no difference between mpMRI-based and pathology-based RCB, which positively correlated (⍴ = 0.74-0.81, p < 0.05). Pathology-based RCB positively correlated with post-treatment DCE metrics (⍴ = 0.76-0.70, p < 0.05) and negatively with ADC (⍴ = -0.79, p = 0.03). CONCLUSION: Given the heterogeneity of PCa, an individualized approach to ADT may maximize potential benefit. This pilot study suggests that mpMRI may serve as a biomarker of ADT response and as a surrogate for RCB at prostatectomy.
Tseng CEJ, Gilbert TM, Catanese MC, Hightower BG, Peters AT, Parmar AJ, Kim M, Wang C, Roffman JL, Brown HE, Perlis RH, Zürcher NR, Hooker JM. In Vivo Human Brain Expression of Histone Deacetylases in Bipolar Disorder. Transl Psychiatry. 2020;10(1):224.
The etiology of bipolar disorder (BD) is unknown and the neurobiological underpinnings are not fully understood. Both genetic and environmental factors contribute to the risk of BD, which may be linked through epigenetic mechanisms, including those regulated by histone deacetylase (HDAC) enzymes. This study measures in vivo HDAC expression in individuals with BD for the first time using the HDAC-specific radiotracer [C]Martinostat. Eleven participants with BD and 11 age- and sex-matched control participants (CON) completed a simultaneous magnetic resonance - positron emission tomography (MR-PET) scan with [C]Martinostat. Lower [C]Martinostat uptake was found in the right amygdala of BD compared to CON. We assessed uptake in the dorsolateral prefrontal cortex (DLPFC) to compare previous findings of lower uptake in the DLPFC in schizophrenia and found no group differences in BD. Exploratory whole-brain voxelwise analysis showed lower [C]Martinostat uptake in the bilateral thalamus, orbitofrontal cortex, right hippocampus, and right amygdala in BD compared to CON. Furthermore, regional [C]Martinostat uptake was associated with emotion regulation in BD in fronto-limbic areas, which aligns with findings from previous structural, functional, and molecular neuroimaging studies in BD. Regional [C]Martinostat uptake was associated with attention in BD in fronto-parietal and temporal regions. These findings indicate a potential role of HDACs in BD pathophysiology. In particular, HDAC expression levels may modulate attention and emotion regulation, which represent two core clinical features of BD.
Fedorov A, Beichel R, Kalpathy-Cramer J, Clunie D, Onken M, Riesmeier J, Herz C, Bauer C, Beers A, Fillion-Robin JC, Lasso A, Pinter C, Pieper S, Nolden M, Maier-Hein K, Herrmann MD, Saltz J, Prior F, Fennessy F, Buatti J, Kikinis R. Quantitative Imaging Informatics for Cancer Research. JCO Clin Cancer Inform. 2020;4:444–53.
PURPOSE: We summarize Quantitative Imaging Informatics for Cancer Research (QIICR; U24 CA180918), one of the first projects funded by the National Cancer Institute (NCI) Informatics Technology for Cancer Research program. METHODS: QIICR was motivated by the 3 use cases from the NCI Quantitative Imaging Network. 3D Slicer was selected as the platform for implementation of open-source quantitative imaging (QI) tools. Digital Imaging and Communications in Medicine (DICOM) was chosen for standardization of QI analysis outputs. Support of improved integration with community repositories focused on The Cancer Imaging Archive (TCIA). Priorities included improved capabilities of the standard, toolkits and tools, reference datasets, collaborations, and training and outreach. RESULTS: Fourteen new tools to support head and neck cancer, glioblastoma, and prostate cancer QI research were introduced and downloaded over 100,000 times. DICOM was amended, with over 40 correction proposals addressing QI needs. Reference implementations of the standard in a popular toolkit and standalone tools were introduced. Eight datasets exemplifying the application of the standard and tools were contributed. An open demonstration/connectathon was organized, attracting the participation of academic groups and commercial vendors. Integration of tools with TCIA was improved by implementing programmatic communication interface and by refining best practices for QI analysis results curation. CONCLUSION: Tools, capabilities of the DICOM standard, and datasets we introduced found adoption and utility within the cancer imaging community. A collaborative approach is critical to addressing challenges in imaging informatics at the national and international levels. Numerous challenges remain in establishing and maintaining the infrastructure of analysis tools and standardized datasets for the imaging community. Ideas and technology developed by the QIICR project are contributing to the NCI Imaging Data Commons currently being developed.
Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, Naqa IE, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Fernandez JS, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk L V, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2):328–38.
Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 See also the editorial by Kuhl and Truhn in this issue.
Fedorov A, Hancock M, Clunie D, Brochhausen M, Bona J, Kirby J, Freymann J, Pieper S, Aerts HJWL, Kikinis R, Prior F. DICOM Re-encoding of Volumetrically Annotated Lung Imaging Database Consortium (LIDC) Nodules. Med Phys. 2020;47(11):5953–65.
PURPOSE: The dataset contains annotations for lung nodules collected by the Lung Imaging Data Consortium and Image Database Resource Initiative (LIDC) stored as standard DICOM objects. The annotations accompany a collection of computed tomography (CT) scans for over 1000 subjects annotated by multiple expert readers, and correspond to "nodules >= 3 mm", defined as any lesion considered to be a nodule with greatest in-plane dimension in the range 3-30 mm regardless of presumed histology. The present dataset aims to simplify reuse of the data with the readily available tools, and is targeted towards researchers interested in the analysis of lung CT images. ACQUISITION AND VALIDATION METHODS: Open source tools were utilized to parse the project-specific XML representation of LIDC-IDRI annotations and save the result as standard DICOM objects. Validation procedures focused on establishing compliance of the resulting objects with the standard, consistency of the data between the DICOM and project-specific representation, and evaluating interoperability with the existing tools. DATA FORMAT AND USAGE NOTES: The dataset utilizes DICOM Segmentation objects for storing annotations of the lung nodules, and DICOM Structured Reporting objects for communicating qualitative evaluations (nine attributes) and quantitative measurements (three attributes) associated with the nodules. The total of 875 subjects contain 6859 nodule annotations. Clustering of the neighboring annotations resulted in 2651 distinct nodules. The data are available in TCIA at https://doi.org/10.7937/TCIA.2018.h7umfurq. POTENTIAL APPLICATIONS: The standardized dataset maintains the content of the original contribution of the LIDC-IDRI consortium, and should be helpful in developing automated tools for characterization of lung lesions and image phenotyping. In addition to those properties, the representation of the present dataset makes it more FAIR (Findable, Accessible, Interoperable, Reusable) for the research community, and enables its integration with other standardized data collections.
Miskin N, Unadkat P, Carlton ME, Golby AJ, Young GS, Huang RY. Frequency and Evolution of New Postoperative Enhancement on 3 Tesla Intraoperative and Early Postoperative Magnetic Resonance Imaging. Neurosurgery. 2020;87(2):238–46.
BACKGROUND: Intraoperative magnetic resonance imaging (IO-MRI) provides real-time assessment of extent of resection of brain tumor. Development of new enhancement during IO-MRI can confound interpretation of residual enhancing tumor, although the incidence of this finding is unknown. OBJECTIVE: To determine the frequency of new enhancement during brain tumor resection on intraoperative 3 Tesla (3T) MRI. To optimize the postoperative imaging window after brain tumor resection using 1.5 and 3T MRI. METHODS: We retrospectively evaluated 64 IO-MRI performed for patients with enhancing brain lesions referred for biopsy or resection as well as a subset with an early postoperative MRI (EP-MRI) within 72 h of surgery (N = 42), and a subset with a late postoperative MRI (LP-MRI) performed between 120 h and 8 wk postsurgery (N = 34). Three radiologists assessed for new enhancement on IO-MRI, and change in enhancement on available EP-MRI and LP-MRI. Consensus was determined by majority response. Inter-rater agreement was assessed using percentage agreement. RESULTS: A total of 10 out of 64 (16%) of the IO-MRI demonstrated new enhancement. Seven of 10 patients with available EP-MRI demonstrated decreased/resolved enhancement. One out of 42 (2%) of the EP-MRI demonstrated new enhancement, which decreased on LP-MRI. Agreement was 74% for the assessment of new enhancement on IO-MRI and 81% for the assessment of new enhancement on the EP-MRI. CONCLUSION: New enhancement occurs in intraoperative 3T MRI in 16% of patients after brain tumor resection, which decreases or resolves on subsequent MRI within 72 h of surgery. Our findings indicate the opportunity for further study to optimize the postoperative imaging window.
Smith BJ, Buatti JM, Bauer C, Ulrich EJ, Ahmadvand P, Budzevich MM, Gillies RJ, Goldgof D, Grkovski M, Hamarneh G, Kinahan PE, Muzi JP, Muzi M, Laymon CM, Mountz JM, Nehmeh S, Oborski MJ, Zhao B, Sunderland JJ, Beichel RR. Multisite Technical and Clinical Performance Evaluation of Quantitative Imaging Biomarkers from 3D FDG PET Segmentations of Head and Neck Cancer Images. Tomography. 2020;6(2):65–76.
Quantitative imaging biomarkers (QIBs) provide medical image-derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are prone to measurement errors owing to differences in image processing factors such as the tumor segmentation method used to define volumes of interest over which to calculate QIBs. We illustrate a new Bayesian statistical approach to characterize the robustness of QIBs to different processing factors. Study data consist of 22 QIBs measured on 47 head and neck tumors in 10 positron emission tomography/computed tomography scans segmented manually and with semiautomated methods used by 7 institutional members of the NCI Quantitative Imaging Network. QIB performance is estimated and compared across institutions with respect to measurement errors and power to recover statistical associations with clinical outcomes. Analysis findings summarize the performance impact of different segmentation methods used by Quantitative Imaging Network members. Robustness of some advanced biomarkers was found to be similar to conventional markers, such as maximum standardized uptake value. Such similarities support current pursuits to better characterize disease and predict outcomes by developing QIBs that use more imaging information and are robust to different processing factors. Nevertheless, to ensure reproducibility of QIB measurements and measures of association with clinical outcomes, errors owing to segmentation methods need to be reduced.
Li MD, Chang K, Bearce B, Chang CY, Huang AJ, Campbell P, Brown JM, Singh P, Hoebel K V, Erdoğmuş D, Ioannidis S, Palmer WE, Chiang MF, Kalpathy-Cramer J. Siamese Neural Networks for Continuous Disease Severity Evaluation and Change Detection in Medical Imaging. NPJ Digit Med. 2020;3(1):48.
Using medical images to evaluate disease severity and change over time is a routine and important task in clinical decision making. Grading systems are often used, but are unreliable as domain experts disagree on disease severity category thresholds. These discrete categories also do not reflect the underlying continuous spectrum of disease severity. To address these issues, we developed a convolutional Siamese neural network approach to evaluate disease severity at single time points and change between longitudinal patient visits on a continuous spectrum. We demonstrate this in two medical imaging domains: retinopathy of prematurity (ROP) in retinal photographs and osteoarthritis in knee radiographs. Our patient cohorts consist of 4861 images from 870 patients in the Imaging and Informatics in Retinopathy of Prematurity (i-ROP) cohort study and 10,012 images from 3021 patients in the Multicenter Osteoarthritis Study (MOST), both of which feature longitudinal imaging data. Multiple expert clinician raters ranked 100 retinal images and 100 knee radiographs from excluded test sets for severity of ROP and osteoarthritis, respectively. The Siamese neural network output for each image in comparison to a pool of normal reference images correlates with disease severity rank (ρ = 0.87 for ROP and ρ = 0.89 for osteoarthritis), both within and between the clinical grading categories. Thus, this output can represent the continuous spectrum of disease severity at any single time point. The difference in these outputs can be used to show change over time. Alternatively, paired images from the same patient at two time points can be directly compared using the Siamese neural network, resulting in an additional continuous measure of change between images. Importantly, our approach does not require manual localization of the pathology of interest and requires only a binary label for training (same versus different). The location of disease and site of change detected by the algorithm can be visualized using an occlusion sensitivity map-based approach. For a longitudinal binary change detection task, our Siamese neural networks achieve test set receiving operator characteristic area under the curves (AUCs) of up to 0.90 in evaluating ROP or knee osteoarthritis change, depending on the change detection strategy. The overall performance on this binary task is similar compared to a conventional convolutional deep-neural network trained for multi-class classification. Our results demonstrate that convolutional Siamese neural networks can be a powerful tool for evaluating the continuous spectrum of disease severity and change in medical imaging.
Xu T, Nenning KH, Schwartz E, Hong SJ, Vogelstein JT, Goulas A, Fair DA, Schroeder CE, Margulies DS, Smallwood J, Milham MP, Langs G. Cross-Species Functional Alignment Reveals Evolutionary Hierarchy Within the Connectome. Neuroimage. 2020;223:117346.
Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution - even within subnetworks.