Publications

2018

This paper presents a method for automatically calibrating and assessing the calibration quality of an externally tracked 2-D ultrasound (US) probe by scanning arbitrary, natural tissues, as opposed a specialized calibration phantom as is the typical practice. A generative topic model quantifies the posterior probability of calibration parameters conditioned on local 2-D image features arising from a generic underlying substrate. Auto-calibration is achieved by identifying the maximum a-posteriori image-to-probe transform, and calibration quality is assessed online in terms of the posterior probability of the current image-to-probe transform. Both are closely linked to the 3-D point reconstruction error (PRE) in aligning feature observations arising from the same underlying physical structure in different US images. The method is of practical importance in that it operates simply by scanning arbitrary textured echogenic structures, e.g., in-vivo tissues in the context of the US-guided procedures, without requiring specialized calibration procedures or equipment. Observed data take the form of local scale-invariant features that can be extracted and fit to the model in near real-time. Experiments demonstrate the method on a public data set of in vivo human brain scans of 14 unique subjects acquired in the context of neurosurgery. Online calibration assessment can be performed at approximately 3 Hz for the US images of pixels. Auto-calibration achieves an internal mean PRE of 1.2 mm and a discrepancy of [2 mm, 6 mm] in comparison to the calibration via a standard phantom-based method.

Stefanik L, Erdman L, Ameis SH, Foussias G, Mulsant BH, Behdinan T, Goldenberg A, Donnell LJO, Voineskos AN. Brain-Behavior Participant Similarity Networks Among Youth and Emerging Adults with Schizophrenia Spectrum, Autism Spectrum, or Bipolar Disorder and Matched Controls. Neuropsychopharmacology. 2018;43(5):1180–8.

There is considerable heterogeneity in social cognitive and neurocognitive performance among people with schizophrenia spectrum disorders (SSD), autism spectrum disorders (ASD), bipolar disorder (BD), and healthy individuals. This study used Similarity Network Fusion (SNF), a novel data-driven approach, to identify participant similarity networks based on relationships among demographic, brain imaging, and behavioral data. T1-weighted and diffusion-weighted magnetic resonance images were obtained for 174 adolescents and young adults (aged 16-35 years) with an SSD (n=51), an ASD without intellectual disability (n=38), euthymic BD (n=34), and healthy controls (n=51). A battery of social cognitive and neurocognitive tasks were administered. Data integration, cluster determination, and biological group formation were then obtained using SNF. We identified four new groups of individuals, each with distinct neural circuit-cognitive profiles. The most influential variables driving the formation of the new groups were robustly reliable across embedded resampling techniques. The data-driven groups showed considerably greater differentiation on key social and neurocognitive circuit nodes than groups generated by diagnostic analyses or dimensional social cognitive analyses. The data-driven groups were validated through functional outcome and brain network property measures not included in the SNF model. Cutting across diagnostic boundaries, our approach can effectively identify new groups of people based on a profile of neuroimaging and behavioral data. Our findings bring us closer to disease subtyping that can be leveraged toward the targeting of specific neural circuitry among participant subgroups to ameliorate social cognitive and neurocognitive deficits.

Zhang F, Wu W, Ning L, McAnulty G, Waber D, Gagoski B, Sarill K, Hamoda HM, Song Y, Cai W, Rathi Y, Donnell LJO. Suprathreshold Fiber Cluster Statistics: Leveraging White Matter Geometry to Enhance Tractography Statistical Analysis. Neuroimage. 2018;171:341–54.

This work presents a suprathreshold fiber cluster (STFC) method that leverages the whole brain fiber geometry to enhance statistical group difference analyses. The proposed method consists of 1) a well-established study-specific data-driven tractography parcellation to obtain white matter tract parcels and 2) a newly proposed nonparametric, permutation-test-based STFC method to identify significant differences between study populations. The basic idea of our method is that a white matter parcel’s neighborhood (nearby parcels with similar white matter anatomy) can support the parcel’s statistical significance when correcting for multiple comparisons. We propose an adaptive parcel neighborhood strategy to allow suprathreshold fiber cluster formation that is robust to anatomically varying inter-parcel distances. The method is demonstrated by application to a multi-shell diffusion MRI dataset from 59 individuals, including 30 attention deficit hyperactivity disorder patients and 29 healthy controls. Evaluations are conducted using both synthetic and in-vivo data. The results indicate that the STFC method gives greater sensitivity in finding group differences in white matter tract parcels compared to several traditional multiple comparison correction methods.

Ning L, Nilsson M, Lasič S, Westin CF, Rathi Y. Cumulant Expansions for Measuring Water Exchange using Diffusion MRI. J Chem Phys. 2018;148(7):074109.

The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.

Albi A, Meola A, Zhang F, Kahali P, Rigolo L, Tax CMW, Ciris PA, Essayed WI, Unadkat P, Norton I, Rathi Y, Olubiyi O, Golby AJ, Donnell LJO. Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects. J Neuroimaging. 2018;28(2):173–82.

BACKGROUND AND PURPOSE: Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients’ white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. METHODS: Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. RESULTS: Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. CONCLUSIONS: Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings.

Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, Pieper S, Frisken S, Golby A, Wells W. Non-rigid Registration of 3D Ultrasound for Neurosurgery using Automatic Feature Detection and Matching. Int J Comput Assist Radiol Surg. 2018;13(10):1525–38.

PURPOSE: The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. METHODS: A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. RESULTS: Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. CONCLUSIONS: This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

Gong S, Zhang F, Norton I, Essayed WI, Unadkat P, Rigolo L, Pasternak O, Rathi Y, Hou L, Golby AJ, Donnell LJO. Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography: Application to Tracking the Arcuate Fasciculus for Neurosurgical Planning. PLoS One. 2018;13(5):e0197056.

PURPOSE: Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. MATERIALS AND METHODS: We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. RESULTS: The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. CONCLUSION: Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.

Özarslan E, Yolcu C, Herberthson M, Knutsson H, Westin CF. Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal. Front Phys. 2018;6.

Neuronal and glial projections can be envisioned to be tubes of infinitesimal diameter as far as diffusion magnetic resonance (MR) measurements via clinical scanners are concerned. Recent experimental studies indicate that the decay of the orientationally-averaged signal in white-matter may be characterized by the power-law, () ∝ , where is the wavenumber determined by the parameters of the pulsed field gradient measurements. One particular study by McKinnon . [1] reports a distinctively faster decay in gray-matter. Here, we assess the role of the size and curvature of the neurites and glial arborizations in these experimental findings. To this end, we studied the signal decay for diffusion along general curves at all three temporal regimes of the traditional pulsed field gradient measurements. We show that for curvy projections, employment of longer pulse durations leads to a disappearance of the decay, while such decay is robust when narrow gradient pulses are used. Thus, in clinical acquisitions, the lack of such a decay for a fibrous specimen can be seen as indicative of fibers that are curved. We note that the above discussion is valid for an intermediate range of -values as the true asymptotic behavior of the signal decay is () ∝ for narrow pulses (through Debye-Porod law) or steeper for longer pulses. This study is expected to provide insights for interpreting the diffusion-weighted images of the central nervous system and aid in the design of acquisition strategies.

Luo J, Frisken S, Machado I, Zhang M, Pieper S, Golland P, Toews M, Unadkat P, Sedghi A, Zhou H, Mehrtash A, Preiswerk F, Cheng CC, Golby A, Sugiyama M, Wells WM. Using the Variogram for Vector Outlier Screening: Application to Feature-based Image Registration. Int J Comput Assist Radiol Surg. 2018;13(12):1871–80.

PURPOSE: Matching points that are derived from features or landmarks in image data is a key step in some medical imaging applications. Since most robust point matching algorithms claim to be able to deal with outliers, users may place high confidence in the matching result and use it without further examination. However, for tasks such as feature-based registration in image-guided neurosurgery, even a few mismatches, in the form of invalid displacement vectors, could cause serious consequences. As a result, having an effective tool by which operators can manually screen all matches for outliers could substantially benefit the outcome of those applications. METHODS: We introduce a novel variogram-based outlier screening method for vectors. The variogram is a powerful geostatistical tool for characterizing the spatial dependence of stochastic processes. Since the spatial correlation of invalid displacement vectors, which are considered as vector outliers, tends to behave differently than normal displacement vectors, they can be efficiently identified on the variogram. RESULTS: We validate the proposed method on 9 sets of clinically acquired ultrasound data. In the experiment, potential outliers are flagged on the variogram by one operator and further evaluated by 8 experienced medical imaging researchers. The matching quality of those potential outliers is approximately 1.5 lower, on a scale from 1 (bad) to 5 (good), than valid displacement vectors. CONCLUSION: The variogram is a simple yet informative tool. While being used extensively in geostatistical analysis, it has not received enough attention in the medical imaging field. We believe there is a good deal of potential for clinically applying the proposed outlier screening method. By way of this paper, we also expect researchers to find variogram useful in other medical applications that involve motion vectors analyses.

Hong Y, Donnell LJO, Savadjiev P, Zhang F, Wassermann D, Pasternak O, Johnson H, Paulsen J, Vonsattel JP, Makris N, Westin CF, Rathi Y. Genetic Load Determines Atrophy in Hand Cortico-striatal Pathways in Presymptomatic Huntington’s Disease. Hum Brain Mapp. 2018;39(10):3871–83.

Huntington’s disease (HD) is an inherited neurodegenerative disorder that causes progressive breakdown of striatal neurons. Standard white matter integrity measures like fractional anisotropy and mean diffusivity derived from diffusion tensor imaging were analyzed in prodromal-HD subjects; however, they studied either a whole brain or specific subcortical white matter structures with connections to cortical motor areas. In this work, we propose a novel analysis of a longitudinal cohort of 243 prodromal-HD individuals and 88 healthy controls who underwent two or more diffusion MRI scans as part of the PREDICT-HD study. We separately trace specific white matter fiber tracts connecting the striatum (caudate and putamen) with four cortical regions corresponding to the hand, face, trunk, and leg motor areas. A multi-tensor tractography algorithm with an isotropic volume fraction compartment allows estimating diffusion of fast-moving extra-cellular water in regions containing crossing fibers and provides quantification of a microstructural property related to tissue atrophy. The tissue atrophy rate is separately analyzed in eight cortico-striatal pathways as a function of CAG-repeats (genetic load) by statistically regressing out age effect from our cohort. The results demonstrate a statistically significant increase in isotropic volume fraction (atrophy) bilaterally in hand fiber connections to the putamen with increasing CAG-repeats, which connects the genetic abnormality (CAG-repeats) to an imaging-based microstructural marker of tissue integrity in specific white matter pathways in HD. Isotropic volume fraction measures in eight cortico-striatal pathways are also correlated significantly with total motor scores and diagnostic confidence levels, providing evidence of their relevance to HD clinical presentation.