Slicer Core Publications

2017
Christian Herz, Jean-Christophe Fillion-Robin, Michael Onken, Jörg Riesmeier, Andras Lasso, Csaba Pinter, Gabor Fichtinger, Steve Pieper, David Clunie, Ron Kikinis, and Andriy Fedorov. 11/2017. “DCMQI: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results using DICOM.” Cancer Research, 77, 21, Pp. e87-e90.Abstract
Quantitative analysis of clinical image data is an active area of research that holds promise for precision medicine, early assessment of treatment response, and objective characterization of the disease. Interoperability, data sharing, and the ability to mine the resulting data are of increasing importance, given the explosive growth in the number of quantitative analysis methods being proposed. The Digital Imaging and Communications in Medicine (DICOM) standard is widely adopted for image and metadata in radiology. dcmqi (DICOM for Quantitative Imaging) is a free, open source library that implements conversion of the data stored in commonly used research formats into the standard DICOM representation. dcmqi source code is distributed under BSD-style license. It is freely available as a precompiled binary package for every major operating system, as a Docker image, and as an extension to 3D Slicer. Installation and usage instructions are provided on Harvard DASH.
Zora Kikinis, Marc Muehlmann, Ofer Pasternak, Sharon Peled, Praveen Kulkarni, Craig Ferris, Sylvain Bouix, Yogesh Rathi, Inga K Koerte, Steve Pieper, Alexander Yarmarkovich, Caryn L Porter, Bruce S Kristal, and Martha E Shenton. 7/2017. “Diffusion Imaging of Mild Traumatic Brain Injury in the Impact Accelerated Rodent Model: A Pilot Study.” Brain Inj, 31, 10, Pp. 1376-81.Abstract
PRIMARY OBJECTIVE: There is a need to understand pathologic processes of the brain following mild traumatic brain injury (mTBI). Previous studies report axonal injury and oedema in the first week after injury in a rodent model. This study aims to investigate the processes occurring 1 week after injury at the time of regeneration and degeneration using diffusion tensor imaging (DTI) in the impact acceleration rat mTBI model. RESEARCH DESIGN: Eighteen rats were subjected to impact acceleration injury, and three rats served as sham controls. Seven days post injury, DTI was acquired from fixed rat brains using a 7T scanner. Group comparison of Fractional Anisotropy (FA) values between traumatized and sham animals was performed using Tract-Based Spatial Statistics (TBSS), a method that we adapted for rats. MAIN OUTCOMES AND RESULTS: TBSS revealed white matter regions of the brain with increased FA values in the traumatized versus sham rats, localized mainly to the contrecoup region. Regions of increased FA included the pyramidal tract, the cerebral peduncle, the superior cerebellar peduncle and to a lesser extent the fibre tracts of the corpus callosum, the anterior commissure, the fimbria of the hippocampus, the fornix, the medial forebrain bundle and the optic chiasm. CONCLUSION: Seven days post injury, during the period of tissue reparation in the impact acceleration rat model of mTBI, microstructural changes to white matter can be detected using DTI.
Stephen SF Yip, Chintan Parmar, Daniel Blezek, Raul San Jose Estepar, Steve Pieper, John Kim, and Hugo JWL Aerts. 6/2017. “Application of the 3D Slicer Chest Imaging Platform Segmentation Algorithm for Large Lung Nodule Delineation.” PLoS One, 12, 6, Pp. e0178944.Abstract
PURPOSE: Accurate segmentation of lung nodules is crucial in the development of imaging biomarkers for predicting malignancy of the nodules. Manual segmentation is time consuming and affected by inter-observer variability. We evaluated the robustness and accuracy of a publically available semiautomatic segmentation algorithm that is implemented in the 3D Slicer Chest Imaging Platform (CIP) and compared it with the performance of manual segmentation. METHODS: CT images of 354 manually segmented nodules were downloaded from the LIDC database. Four radiologists performed the manual segmentation and assessed various nodule characteristics. The semiautomatic CIP segmentation was initialized using the centroid of the manual segmentations, thereby generating four contours for each nodule. The robustness of both segmentation methods was assessed using the region of uncertainty (δ) and Dice similarity index (DSI). The robustness of the segmentation methods was compared using the Wilcoxon-signed rank test (pWilcoxon<0.05). The Dice similarity index (DSIAgree) between the manual and CIP segmentations was computed to estimate the accuracy of the semiautomatic contours. RESULTS: The median computational time of the CIP segmentation was 10 s. The median CIP and manually segmented volumes were 477 ml and 309 ml, respectively. CIP segmentations were significantly more robust than manual segmentations (median δCIP = 14ml, median dsiCIP = 99% vs. median δmanual = 222ml, median dsimanual = 82%) with pWilcoxon~10-16. The agreement between CIP and manual segmentations had a median DSIAgree of 60%. While 13% (47/354) of the nodules did not require any manual adjustment, minor to substantial manual adjustments were needed for 87% (305/354) of the nodules. CIP segmentations were observed to perform poorly (median DSIAgree≈50%) for non-/sub-solid nodules with subtle appearances and poorly defined boundaries. CONCLUSION: Semi-automatic CIP segmentation can potentially reduce the physician workload for 13% of nodules owing to its computational efficiency and superior stability compared to manual segmentation. Although manual adjustment is needed for many cases, CIP segmentation provides a preliminary contour for physicians as a starting point.
Yangming Ou, Lilla Zöllei, Kallirroi Retzepi, Victor Castro, Sara V Bates, Steve Pieper, Katherine P Andriole, Shawn N Murphy, Randy L Gollub, and Patricia Ellen Grant. 6/2017. “Using Clinically Acquired MRI to Construct Age-specific Atlases: Quantifying Spatiotemporal ADC Changes from Birth to 6-year Old.” Hum Brain Mapp, 38, 6, Pp. 3052-68.Abstract
Diffusion imaging is critical for detecting acute brain injury. However, normal apparent diffusion coefficient (ADC) maps change rapidly in early childhood, making abnormality detection difficult. In this article, we explored clinical PACS and electronic healthcare records (EHR) to create age-specific ADC atlases for clinical radiology reference. Using the EHR and three rounds of multiexpert reviews, we found ADC maps from 201 children 0-6 years of age scanned between 2006 and 2013 who had brain MRIs with no reported abnormalities and normal clinical evaluations 2+ years later. These images were grouped in 10 age bins, densely sampling the first 1 year of life (5 bins, including neonates and 4 quarters) and representing the 1-6 year age range (an age bin per year). Unbiased group-wise registration was used to construct ADC atlases for 10 age bins. We used the atlases to quantify (a) cross-sectional normative ADC variations; (b) spatiotemporal heterogeneous ADC changes; and (c) spatiotemporal heterogeneous volumetric changes. The quantified age-specific whole-brain and region-wise ADC values were compared to those from age-matched individual subjects in our study and in multiple existing independent studies. The significance of this study is that we have shown that clinically acquired images can be used to construct normative age-specific atlases. These first of their kind age-specific normative ADC atlases quantitatively characterize changes of myelination-related water diffusion in the first 6 years of life. The quantified voxel-wise spatiotemporal ADC variations provide standard references to assist radiologists toward more objective interpretation of abnormalities in clinical images. Our atlases are available at https://www.nitrc.org/projects/mgh_adcatlases.
Jorge L Bernal-Rusiel, Nicolas Rannou, Randy L Gollub, Steve Pieper, Shawn Murphy, Richard Robertson, Patricia E Grant, and Rudolph Pienaar. 5/2017. “Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization.” Front Neuroinform, 11, Pp. 32.Abstract
In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView, a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.
Xiaojun Chen, Lu Xu, Huixiang Wang, Fang Wang, Qiugen Wang, and Ron Kikinis. 3/2017. “Development of a Surgical Navigation System Based on 3D Slicer for Intraoperative Implant Placement Surgery.” Med Eng Phys, 41, Pp. 81-9.Abstract

Implant placement has been widely used in various kinds of surgery. However, accurate intraoperative drilling performance is essential to avoid injury to adjacent structures. Although some commercially-available surgical navigation systems have been approved for clinical applications, these systems are expensive and the source code is not available to researchers. 3D Slicer is a free, open source software platform for the research community of computer-aided surgery. In this study, a loadable module based on Slicer has been developed and validated to support surgical navigation. This research module allows reliable calibration of the surgical drill, point-based registration and surface matching registration, so that the position and orientation of the surgical drill can be tracked and displayed on the computer screen in real time, aiming at reducing risks. In accuracy verification experiments, the mean target registration error (TRE) for point-based and surface-based registration were 0.31±0.06mm and 1.01±0.06mm respectively, which should meet clinical requirements. Both phantom and cadaver experiments demonstrated the feasibility of our surgical navigation software module.

Rahul Sastry, Wenya Linda Bi, Steve Pieper, Sarah Frisken, Tina Kapur, William M Wells III, and Alexandra J Golby. 1/2017. “Applications of Ultrasound in the Resection of Brain Tumors.” J Neuroimaging, 27, 1, Pp. 5-15.Abstract

Neurosurgery makes use of preoperative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of preoperative imaging for neuronavigation, however, is diminished by the well-characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography, has dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies.

2016
Tina Kapur, Steve Pieper, Andriy Fedorov, J-C Fillion-Robin, Michael Halle, Lauren O'Donnell, Andras Lasso, Tamas Ungi, Csaba Pinter, Julien Finet, Sonia Pujol, Jayender Jagadeesan, Junichi Tokuda, Isaiah Norton, Raul San Jose Estepar, David Gering, Hugo JWL Aerts, Marianna Jakab, Nobuhiko Hata, Luiz Ibanez, Daniel Blezek, Jim Miller, Stephen Aylward, Eric WL Grimson, Gabor Fichtinger, William M Wells III, William E Lorensen, Will Schroeder, and Ron Kikinis. 10/2016. “Increasing the Impact of Medical Image Computing using Community-based Open-access Hackathons: The NA-MIC and 3D Slicer Experience.” Med Image Anal, 33, Pp. 176-80.Abstract

The National Alliance for Medical Image Computing (NA-MIC) was launched in 2004 with the goal of investigating and developing an open source software infrastructure for the extraction of information and knowledge from medical images using computational methods. Several leading research and engineering groups participated in this effort that was funded by the US National Institutes of Health through a variety of infrastructure grants. This effort transformed 3D Slicer from an internal, Boston-based, academic research software application into a professionally maintained, robust, open source platform with an international leadership and developer and user communities. Critical improvements to the widely used underlying open source libraries and tools-VTK, ITK, CMake, CDash, DCMTK-were an additional consequence of this effort. This project has contributed to close to a thousand peer-reviewed publications and a growing portfolio of US and international funded efforts expanding the use of these tools in new medical computing applications every year. In this editorial, we discuss what we believe are gaps in the way medical image computing is pursued today; how a well-executed research platform can enable discovery, innovation and reproducible science ("Open Science"); and how our quest to build such a software platform has evolved into a productive and rewarding social engineering exercise in building an open-access community with a shared vision.

Andriy Fedorov, David Clunie, Ethan Ulrich, Christian Bauer, Andreas Wahle, Bartley Brown, Michael Onken, Jörg Riesmeier, Steve Pieper, Ron Kikinis, John Buatti, and Reinhard R Beichel. 5/2016. “DICOM for Quantitative Imaging Biomarker Development: A Standards Based Approach to Sharing Clinical Data and Structured PET/CT Analysis Results in Head and Neck Cancer Research.” PeerJ, 4, Pp. e2057.Abstract

Background. Imaging biomarkers hold tremendous promise for precision medicine clinical applications. Development of such biomarkers relies heavily on image post-processing tools for automated image quantitation. Their deployment in the context of clinical research necessitates interoperability with the clinical systems. Comparison with the established outcomes and evaluation tasks motivate integration of the clinical and imaging data, and the use of standardized approaches to support annotation and sharing of the analysis results and semantics. We developed the methodology and tools to support these tasks in Positron Emission Tomography and Computed Tomography (PET/CT) quantitative imaging (QI) biomarker development applied to head and neck cancer (HNC) treatment response assessment, using the Digital Imaging and Communications in Medicine (DICOM(®)) international standard and free open-source software. Methods. Quantitative analysis of PET/CT imaging data collected on patients undergoing treatment for HNC was conducted. Processing steps included Standardized Uptake Value (SUV) normalization of the images, segmentation of the tumor using manual and semi-automatic approaches, automatic segmentation of the reference regions, and extraction of the volumetric segmentation-based measurements. Suitable components of the DICOM standard were identified to model the various types of data produced by the analysis. A developer toolkit of conversion routines and an Application Programming Interface (API) were contributed and applied to create a standards-based representation of the data. Results. DICOM Real World Value Mapping, Segmentation and Structured Reporting objects were utilized for standards-compliant representation of the PET/CT QI analysis results and relevant clinical data. A number of correction proposals to the standard were developed. The open-source DICOM toolkit (DCMTK) was improved to simplify the task of DICOM encoding by introducing new API abstractions. Conversion and visualization tools utilizing this toolkit were developed. The encoded objects were validated for consistency and interoperability. The resulting dataset was deposited in the QIN-HEADNECK collection of The Cancer Imaging Archive (TCIA). Supporting tools for data analysis and DICOM conversion were made available as free open-source software. Discussion. We presented a detailed investigation of the development and application of the DICOM model, as well as the supporting open-source tools and toolkits, to accommodate representation of the research data in QI biomarker development. We demonstrated that the DICOM standard can be used to represent the types of data relevant in HNC QI biomarker development, and encode their complex relationships. The resulting annotated objects are amenable to data mining applications, and are interoperable with a variety of systems that support the DICOM standard.

2014
Nabgha Farhat. 1/2014. “Tutorial: Preparing Data for 3-D Printing using 3D Slicer”.Abstract
This tutorial demonstrates how to prepare data for 3D printing using the open source software 3D Slicer. The following topics are highlighted in the tutorial: introduction to the 3D Slicer interface, loading data into 3D Slicer, volume rendering, cropping image volumes, creating label maps, creating surface models, and saving data in file formats appropriate for 3D printing.
3D Printing Tutorial.mov
2013
Jean-Jacques Lemaire, Alexandra Golby, William M Wells III, Sonia Pujol, Yanmei Tie, Laura Rigolo, Alexander Yarmarkovich, Steve Pieper, Carl-Fredrik Westin, Ferenc A Jolesz, and Ron Kikinis. 7/2013. “Extended Broca's Area in the Functional Connectome of Language in Adults: Combined Cortical and Subcortical Single-subject Analysis using fMRI and DTI Tractography.” Brain Topogr, 26, 3, Pp. 428-41.Abstract

Traditional models of the human language circuitry encompass three cortical areas, Broca's, Geschwind's and Wernicke's, and their connectivity through white matter fascicles. The neural connectivity deep to these cortical areas remains poorly understood, as does the macroscopic functional organization of the cortico-subcortical language circuitry. In an effort to expand current knowledge, we combined functional MRI (fMRI) and diffusion tensor imaging to explore subject-specific structural and functional macroscopic connectivity, focusing on Broca's area. Fascicles were studied using diffusion tensor imaging fiber tracking seeded from volumes placed manually within the white matter. White matter fascicles and fMRI-derived clusters (antonym-generation task) of positive and negative blood-oxygen-level-dependent (BOLD) signal were co-registered with 3-D renderings of the brain in 12 healthy subjects. Fascicles connecting BOLD-derived clusters were analyzed within specific cortical areas: Broca's, with the pars triangularis, the pars opercularis, and the pars orbitaris; Geschwind's and Wernicke's; the premotor cortex, the dorsal supplementary motor area, the middle temporal gyrus, the dorsal prefrontal cortex and the frontopolar region. We found a functional connectome divisible into three systems-anterior, superior and inferior-around the insula, more complex than previously thought, particularly with respect to a new extended Broca's area. The extended Broca's area involves two new fascicles: the operculo-premotor fascicle comprised of well-organized U-shaped fibers that connect the pars opercularis with the premotor region; and (2) the triangulo-orbitaris system comprised of intermingled U-shaped fibers that connect the pars triangularis with the pars orbitaris. The findings enhance our understanding of language function.

Jan Egger, Tina Kapur, Andriy Fedorov, Steve Pieper, James V Miller, Harini Veeraraghavan, Bernd Freisleben, Alexandra J Golby, Christopher Nimsky, and Ron Kikinis. 2013. “GBM Volumetry using the 3D Slicer Medical Image Computing Platform.” Sci Rep, 3, Pp. 1364.Abstract
Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions. Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer - a free platform for biomedical research - provides an alternative to this manual slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The time required for GrowCut segmentation was on an average 61% of the time required for a pure manual segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted in a Dice Similarity Coefficient of 88.43 ± 5.23% and a Hausdorff Distance of 2.32 ± 5.23 mm.
Kirby G. Vosburgh, Alexandra Golby, and Steven D Pieper. 2013. “Surgery, Virtual Reality, and the Future.” Stud Health Technol Inform, 184, Pp. 7-13.Abstract
MMVR has provided the leading forum for the multidisciplinary interaction and development of the use of Virtual Reality (VR) techniques in medicine, particularly in surgical practice. Here we look back at the foundations of our field, focusing on the use of VR in Surgery and similar interventional procedures, sum up the current status, and describe the challenges and opportunities going forward.