Development of an open-source system for prostate biopsy training in Senegal

Catherine O Wu1, Babacar Dia2, Tamas Ungi3, Alireza Sedghi4, Ron Kikinis2, Parvin Mousavi1, Gabor Fichtinger1
1School of Computing, Queen’s University, Canada
2Cheikh Anta Diop University, Dakar, Senegal
3Harvard Brigham and Women’s Hospital, Boston, USA

Methods

Introduction

• Prostate cancer is the second most common type of cancer diagnosed in men
• In sub-Saharan Africa, the high number of cases has led to a recent increase in referrals to trans-rectal ultrasound (TRUS) guided prostate biopsy [1]
• This procedure requires training to become proficient in locating and targeting the four prostate zones using only TRUS as a visual aid [2]
• We have partnered with an international aid program, “Train the Trainers”, to develop a feasible prostate biopsy training system for use in Senegal [3]
• To produce a beneficial learning process, the training program teaches users to identify zones on TRUS and perform proper zonal sampling
• This research presents the implementation of imaging simulator for an open-source prostate biopsy training tool, highlighting the critical component of zonal anatomy overlay on TRUS

Methods

Dataset Generation

• Prostate zonal overlay enables the zonal identification step and allows users’ performance to be evaluated
• We acquired anonymized TRUS volumes and prostate zonal segmentations from sources which made data available for research purposes [4], [5]
• We overlaid the zonal segmentations onto the TRUS volumes through deformable fiducial registration (Figure 1)
• Generated a dataset of 10 patients

Figure 1: Prostate ultrasound image (left) with labelled zonal anatomy registered and overlaid (right).

Training Module Implementation

• Python scripted module implemented in 3D Slicer, an open-source medical imaging and visualization platform [6]
• Simulation scene includes 3D view with TRUS and probe, and 2D sagittal view of the corresponding TRUS slice (Figure 2)
• Also consists of a copy of the prostate zones and a transform hierarchy to facilitate the ultrasound simulation
• Training interface:
 1. Load 1 of 10 patient TRUS and zonal overlay
 2. Scan TRUS using buttons or keyboard arrow keys
 3. Toggle zonal overlay visibility
 4. Train identification of zones by placing fiducials on a blank TRUS in the correct regions
 5. Save progress

Figure 2: Screen shot consisting of 3D view with movable TRUS probe and corresponding 2D sagittal US slice (left). Corresponding 2D slice with visible zonal overlay (right).

Proposed Physical System Components:

• Mock TRUS probe
• ArUco Markers
• Mock rectum
• Laptop running 3D Slicer
• Webcam

Figure 3: TRUS biopsy simulator design.

Methods Continued

Evaluation of zonal anatomy overlay

• Performed through a two-part survey to evaluate our overlay as suitable for training prostate zone identification:
 1. Evaluate ten TRUS images overlaid with registered zonal anatomy on a 5-point Likert scale (Figure 1)
 2. Label a specified TRUS region as one of the 4 prostate zones (Figure 4). These labels are compared to our zonal overlay.
• Seven urologists responded based on their interpretation of the zones for each TRUS image

Figure 4: Example from the zone labelling section of the questionnaire.

Results

• On average, the experts rated the accuracy of the zonal overlay at 4 on a 5-point scale
• 7 out of 7 experts labelled the peripheral, anterior, and transitional zones equivalently to our overlay, and 5 out of 7 labelled the central zone equivalently to our overlay (Figure 5)
• Labelling inconsistency for the central zone could be attributed to the challenges of identifying both the central and transitional zone border and any zonal enlargements

Figure 5: Results from the labelling questionnaire.

Conclusion

• We designed and implemented the prototype of a TRUS biopsy imaging simulator in open-source software
• A vital training component, zonal overlay, was generated using publicly accessible image data and was validated by expert urologists.
• We confirm the concept of an educational and open-source prostate biopsy training tool based on clinical patient data

Acknowledgements

Catherine Wu is funded by the NSERC Undergraduate Summer Research Award.
G. Fichtinger is supported as a Canada Research Chair. This work was funded, in part, by CANARIE’s Research Software Program.

References