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Abstract. We propose an optimization method for estimating patient-
specific muscle fiber arrangement from clinical CT. Our approach first
computes the structure tensor field to estimate local orientation, then a
geometric template representing fiber arrangement is fitted using a B-
spline deformation by maximizing fitness of the local orientation using
a smoothness penalty. The initialization is computed with a previously
proposed algorithm that takes account of only the muscle’s surface shape.
Evaluation was performed using a CT volume (1.0 mm3/voxel) and high
resolution optical images of a serial cryo-section (0.1 mm3/voxel). The
mean fiber distance error at the initialization of 6.00 mm was decreased
to 2.78 mm after the proposed optimization for the gluteus maximus
muscle, and from 5.28 mm to 3.09 mm for the gluteus medius muscle. The
result from 20 patient CT images suggested that the proposed algorithm
reconstructed an anatomically more plausible fiber arrangement than the
previous method.
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1 Introduction

Modeling of skeletal muscles has been investigated for biomechanical simula-
tions in surgical planning, rehabilitation and sports medicine as well as for
understanding of the detailed muscle anatomy from a general scientific inter-
est [14]. The conventional string-type muscle model simplifying one muscle as
a few strings has limitations in capturing the three-dimensional deformation
which drastically alters the fiber arrangement that determines the force direc-
tion. Thus, patient-specific volumetric modeling has been drawing attention.
The approaches to reconstructing patient-specific fiber arrangement are clas-
sified into two categories: (1) local orientation measurement inside the muscle
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using medical images such as ultrasound (US) [15], diffusion tensor imaging
(DTI) [12] and micro CT [11], and (2) computational modeling from the mus-
cle’s outer shape using a template fitting approach [2], Laplacian vector field [3]
and computational fluid dynamics [9]. Although these prior works successfully
modeled fiber arrangement, their use in clinical routine is quite limited because
the former approach has a limited field-of-measurement (e.g., US is mostly 2D,
DTI requires long scan time resulting in motion artifact in a scan over the large
area). The latter approach lacks the ability to represent patient-specific variation
in fiber arrangement. On the other hand, we observed that a clinical CT (we use
clinical to emphasize the contrast to micro CT) also has a potential to provide
useful information regarding the muscle fiber arrangement (see Fig. 1 for compar-
ison between a clinical CT and high resolution optical image in Visible Korean
Human (VKH) dataset [8]). The muscle tissue and its surrounding connecting tis-
sue exhibit slightly different x-ray attenuation coefficient (approximately 50–100
HU) which is visually enhanced in its projection view of the segmented muscle
region. In this paper, we propose a method integrating the local orientation and
global template approaches to allow an accurate patient-specific reconstruction
using a modality common in clinical routine, i.e., CT. Our contributions are;
(1) proposal of a muscle fiber modeling incorporating knowledge of the global
fiber geometry into a noisy local orientation measurement from clinical CT, and
(2) quantitative evaluation using tractography derived from a high resolution
optical image and qualitative evaluation using 20 clinical CT images.
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Fig. 1. Visible Korean Human dataset. (a, b) CT and optical image volumes with blue
arrows indicating the corresponding muscle tissue. (c,d) Muscles used in the evaluation,
(left) volume rendering of the optical image, (middle) local orientation at each voxel
(color-mapped by the orientation), (right) tractography with fibers longer than 50 mm.

2 Method

2.1 Overview of the Proposed Method

Figure 2 shows an overview of the proposed method. First, the target muscle is
segmented manually or using an automated algorithm proposed in [6], where the
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hierarchical multi-atlas approach achieved an average surface error of 1.43 mm in
19 hip and thigh muscles. The optimization fits a B-spline interpolated geometric
template representing the muscle’s fiber arrangement proposed by Blemker et al.
[2] to a structure tensor field computed from CT, which represents orientation of
neighborhood structure locally. The estimated B-spline grid provides the muscle
fiber arrangement that best aligns with the orientation of the local structure at
each voxel.

Fig. 2. Overview of the proposed method. The optimization minimizes the difference
between two vector fields: (1) the least eigenvectors of the structure tensor from the
CT volume, and (2) the vectors computed by the B-spline deformation (parameterized
by Θ) of a geometric template representing muscle fiber arrangement.

2.2 Computation of Structure Tensor Vector Field

We obtain the local orientation within the neighborhood at each voxel by com-
puting the eigenvector corresponding to the smallest eigenvalue of the gradient-
based structure tensor [1]. A Gaussian filter (with standard deviation of σ1) was
applied to the image before computing gradient to suppress noise and after com-
puting the gradient (with std. of σ2) to smooth the tensor field. σ1 = 1 mm and
σ2 = 5 mm was used in the experiment below.

Fig. 3. Initialization of B-spline control grid. (a) Harmonic scalar field computed on
the muscle’s surface vertices, (b) contours at iso-values in the scalar field, (c) initial
rough grid fitting (blue: node on the contour, green: internal node), (d) initial B-spline
control grid, (e) fiber arrangement template mapped by the control grid.
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2.3 Initialization of B-Spline Grid

Figure 3 shows the steps to initialize the B-spline grid. The method follows the
idea proposed by Kohout et al. [10], which computed the fiber arrangement from
the muscle’s surface shape. First, the origin and insertion areas of the muscle
are identified. While Kohout et al. identified these areas manually by an expert,
we employ an automated method proposed in [6] which estimates the patient-
specific muscle attachment areas based on the probabilistic atlas constructed
with the physical measurements in cadavers. The method then computes the
Harmonic scalar field [4] on the muscle surface (Fig. 3a) and its iso-lines provide
a series of contours on the surface that smoothly connect origin and insertion
and do not intersect each other (Fig. 3b). The contour is projected onto a plane
fitted to the contour vertices. Then, a two-dimensional lattice grid is fitted to
each projected contour (Fig. 3c). Those grid points are mapped back to the orig-
inal space (Fig. 3d) and a geometric fiber template is deformed by this B-spline
grid (Fig. 3e). Four types of geometric templates representing a fiber geometry of
different types of muscles were proposed by Blemker et al. [2]. The template con-
sists of a cluster of line-segments or curves connecting two boundary regions of a
unit cube (see [2] for details). While we used only the “simple”-type template in
this paper (the origin and insertion boundaries are simply connected by a cluster
of straight lines), incorporation of other types of templates is straightforward by
modifying the template.

2.4 Optimization of B-Spline Grid

Parameterization of Movement of B-Spline Nodes. We divide the nodes
on each contour plane into two groups: the internal node and contour node
(green and blue in Fig. 3c). The internal nodes move on the 2D contour plane,
thus MI internal nodes (green) were parameterized by 2MI parameters. The
contour nodes (blue) are constrained so that they always stay on the contour
(1D curve) and maintain the order, thus the movement of the entire contour
nodes on one contour was represented as one monotonic function that maps
the 1D coordinate to the location on the contour. The monotonic function was
parameterized by MC parameters (MC = 6 in this study). Thus, the number of
parameters to optimize is n(2MI + MC) in case for n contours (the appropriate
n varies depending on the muscle).

Objective Function and Optimization. The objective function in the pro-
posed optimization method is formulated as follows.

Θ̂ = arg max
Θ

{
Dice(ΩF , ΩM )

1
N

∑
i,j,k∈

ΩF ∩ΩM

G(θi,j,k(Θ));σcost) + λg (Θ)
}

(1)

where θi,j,k is the angle between two vectors Fi,j,k (vector derived from struc-
ture tensor) and Mi,j,k(Θ) (vector estimated by the current B-spline deforma-
tion parameterized by Θ), ΩF and ΩM are the regions covered by the fixed
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and moving vector fields, N is the number of voxels in the region ΩF ∩ ΩM ,
G(A;σ) is Gaussian function with a standard deviation of σ, and g(Θ) repre-
sent the regularization term weighted by λ. In the experiment below, we employ
the smoothness penalty common in B-spline deformation model using the total
curvature. The first term in Eq. (1) represents degree of fitting between the
estimated and target vector fields. Dice measure enforces the overlap between
the two regions, which is 1.0 when two regions are completely overlapped, and
Gaussian of the angle between the two vectors enforces alignment of the two
vectors while ignoring outliers in the noisy structure tensor vector field.

CMA-ES (Covariance Matrix Adaptation Evolutionary Strategy) [7] is used
as the optimizer. CMA-ES has been applied in a number of registration appli-
cations and known for its robustness against local optima, while it requires a
large number of function evaluations. The optimization is performed in 3 levels
in succession with decreasing σcost (40, 20, 10◦) to gradually confine the inlier
range and improve the fitting.

2.5 Evaluation Using the Ground Truth Dataset

To establish the ground truth for evaluation, we used the Visible Korean
Human dataset [8] that includes the following two volumes (Fig. 1). (1) Opti-
cal image volume consisting of serially acquired photographs of cryo-section
with a 0.1 mm3/voxel resolution. Segmentation masks of anatomical structures
(e.g., muscles, bones, organs) are also available. (2) CT volume reconstructed
with 1.0 mm3/voxel resolution. The slight deformation of the specimen exhibited
between CT scanning and optical image scanning was corrected using a non-rigid
image registration. The optical images were converted to gray-scale and structure
tensor was computed with σ1 = 0.3 mm and σ2 = 3 mm. We applied tractography
in 3D Slicer (www.slicer.org) [5] via the SlicerDMRI project (dmri.slicer.org) to
the structure tensor field (Fig. 1c, d). The tractography applied to CT image did
not produce fiber trajectories sufficient for evaluation due to the low signal-to-
noise ratio in the structure tensor field.

In the following experiments, the error was evaluated using two metrics;
(1) angular error at each voxel with the structure tensor field from optical image
volume, and (2) fiber distance error defined as the mean distance between pairs
of corresponding points on the fibers [13], which is often used in evaluation of
white matter fibers, with the ground truth tractography.

3 Results

Figures 4 and 5 show the results of the proposed optimization with the glu-
teus maximus and medius muscles in the Visible Korean Human dataset. The
optimization to the optical image was used as a reference to obtain the upper
limit of the accuracy of the proposed method. In the gluteus maximus, both
tensor vector angle error and fiber distance error were smaller than the previ-
ous method (i.e., initial estimate) after the proposed optimization. The accuracy

www.slicer.org
http://dmri.slicer.org
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Fig. 4. Results with the gluteus maximus muscle of Visible Korean Human dataset.
Results using (a) previous method [10], (b) proposed method with the optical image,
(c) proposed method with CT. The second columns show fibers color-mapped according
to the orientation of the local segment.

Fig. 5. Results with the gluteus medius muscle of Visible Korean Human dataset.
Estimated from (a) optical image, (b) CT, and (c) CT with 11 interactively provided
fibers shown in the left most column.

with CT image was almost the same as optical image, which can be attributed
to the relatively thick fat tissue between the muscle tissue, resulting in suffi-
cient contrast in CT to determine the fiber trajectory. On the other hand, the
fat tissue in anterior region of the gluteus medius muscle is thin and does not
have contrast in CT, resulting in low estimation accuracy as shown in 4th and
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Fig. 6. Reconstruction of fiber arrangement from clinical CTs. Results of the gluteus
maximus muscle of 4 (out of 20) example patients are shown.

5th columns in Fig. 5b. As a preliminary attempt, we tested if a small amount
of user interaction improves the reconstruction accuracy. In DRR as in Fig. 1a,
some of the fiber trajectories are visible, so we tried to provide those fiber lines
interactively by an expert. The orientation of manually provided fibers were used
in the cost function same as the image-derived structure tensor. The result in
Fig. 5c demonstrated improved reconstruction accuracy by the user-provided 11
fiber lines. The mean fiber distance error of 6.00 mm with the previous method
in the gluteus maximus decreased to 2.78 mm after the proposed optimization
to CT, and from 5.28 mm to 3.09 mm in the gluteus medius without using the
user-provided fibers. Figure 6 shows the reconstruction results on clinical CT of
four example patients.

4 Discussion and Conclusion

We proposed a method to estimate patient-specific muscle fiber arrangement
from clinical CT images. The experimental results suggested that the proposed
method works accurately on the gluteus maximus muscle and posterior part
of the gluteus medius muscle, but the anterior part exhibited lower accuracy,
which was improved by few interactively provided fiber lines. Analysis of muscle
fiber structure from clinical CT is especially beneficial for patient-specific bio-
mechanical simulation in a clinical routine, because CT acquisition is stable (i.e.,
sensitivity of the acquired image to the scan environment is low) and can cover a
large muscle quickly without the effect of motion artifact taking advantage of an
increasing trend toward extremely low-dose scanning by an advancement of the
detector technology and reconstruction algorithms, as opposed to MRI which
requires a careful protocol design and is sensitive to the scan environment. One
limitation of the current work concerns the demographic bias of the patient. Our
clinical CTs tested in this study were obtained from a database of patients who
were subjected to total hip arthroplasty surgery, where female accounts for a
large fraction, thus all of our target images were female, which generally has
more fat tissue between the muscle tissue which better facilitates determination
of the fiber orientation. Nevertheless, this study showed a potential advantage in
female patients with hip disorders where biomechanical simulation is especially
valuable. Our future work includes further evaluation using cadaver specimens
and a large-scale population analysis of in vivo skeletal muscle fiber arrangement.
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