Image Features for Brain Phenotypes Core Publications

Toews M, Wells III WM. Efficient and Robust Model-to-image Alignment using 3D Scale-invariant Features. Med Image Anal. 2013;17 (3) :271-82.Abstract

This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down.

Toews M, Wells III WM. Source Code for the Paper Titled: Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features. 2012.Abstract
This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a-posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down.
Janoos F, Lee W, Subrahmanya N, Mórocz IA, Wells III WM. Identification of Recurrent Patterns in the Activation of Brain Networks. Adv. In Neural Info. Proc. Sys (NIPS). 2012 :1-9.Abstract
Identifying patterns from the neuroimaging recordings of brain activity related to the unobservable psychological or mental state of an individual can be treated as a unsupervised pattern recognition problem. The main challenges, however, for such an analysis of fMRI data are: a) defining a physiologically meaningful feature-space for representing the spatial patterns across time; b) dealing with the high-dimensionality of the data; and c) robustness to the various artifacts and confounds in the fMRI time-series. In this paper, we present a network-aware feature-space to represent the states of a general network, that enables comparing and clustering such states in a manner that is a) meaningful in terms of the network connectivity structure; b)computationally efficient; c) low-dimensional; and d) relatively robust to structured and random noise artifacts. This feature-space is obtained from a spherical relaxation of the transportation distance metric which measures the cost of trans- porting “mass” over the network to transform one function into another. Through theoretical and empirical assessments, we demonstrate the accuracy and efficiency of the approximation, especially for large problems.

Pages