Image Features for Brain Phenotypes Core Publications

Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, et al. Non-rigid Registration of 3D Ultrasound for Neurosurgery using Automatic Feature Detection and Matching. Int J Comput Assist Radiol Surg. 2018;13 (10) :1525-38.Abstract
PURPOSE: The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. METHODS: A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. RESULTS: Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. CONCLUSIONS: This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.
Gong S, Zhang F, Norton I, Essayed WI, Unadkat P, Rigolo L, Pasternak O, Rathi Y, Hou L, Golby AJ, et al. Free Water Modeling of Peritumoral Edema using Multi-fiber Tractography: Application to Tracking the Arcuate Fasciculus for Neurosurgical Planning. PLoS One. 2018;13 (5) :e0197056.Abstract
PURPOSE: Peritumoral edema impedes the full delineation of fiber tracts due to partial volume effects in image voxels that contain a mixture of cerebral parenchyma and extracellular water. The purpose of this study is to investigate the effect of incorporating a free water (FW) model of edema for white matter tractography in the presence of edema. MATERIALS AND METHODS: We retrospectively evaluated 26 consecutive brain tumor patients with diffusion MRI and T2-weighted images acquired presurgically. Tractography of the arcuate fasciculus (AF) was performed using the two-tensor unscented Kalman filter tractography (UKFt) method, the UKFt method with a reduced fiber tracking stopping fractional anisotropy (FA) threshold (UKFt+rFA), and the UKFt method with the addition of a FW compartment (UKFt+FW). An automated white matter fiber tract identification approach was applied to delineate the AF. Quantitative measurements included tract volume, edema volume, and mean FW fraction. Visual comparisons were performed by three experts to evaluate the quality of the detected AF tracts. RESULTS: The AF volume in edematous brain hemispheres was significantly larger using the UKFt+FW method (p<0.0001) compared to UKFt, but not significantly larger (p = 0.0996) in hemispheres without edema. The AF size increase depended on the volume of edema: a significant correlation was found between AF volume affected by (intersecting) edema and AF volume change with the FW model (Pearson r = 0.806, p<0.0001). The mean FW fraction was significantly larger in tracts intersecting edema (p = 0.0271). Compared to the UKFt+rFA method, there was a significant increase of the volume of the AF tract that intersected the edema using the UKFt+FW method, while the whole AF volumes were similar. Expert judgment results, based on the five patients with the smallest AF volumes, indicated that the expert readers generally preferred the AF tract obtained by using the FW model, according to their anatomical knowledge and considering the potential influence of the final results on the surgical route. CONCLUSION: Our results indicate that incorporating biophysical models of edema can increase the sensitivity of tractography in regions of peritumoral edema, allowing better tract visualization in patients with high grade gliomas and metastases.
Zhang F, Wu W, Ning L, McAnulty G, Waber D, Gagoski B, Sarill K, Hamoda HM, Song Y, Cai W, et al. Suprathreshold Fiber Cluster Statistics: Leveraging White Matter Geometry to Enhance Tractography Statistical Analysis. Neuroimage. 2018;171 :341-54.Abstract
This work presents a suprathreshold fiber cluster (STFC) method that leverages the whole brain fiber geometry to enhance statistical group difference analyses. The proposed method consists of 1) a well-established study-specific data-driven tractography parcellation to obtain white matter tract parcels and 2) a newly proposed nonparametric, permutation-test-based STFC method to identify significant differences between study populations. The basic idea of our method is that a white matter parcel's neighborhood (nearby parcels with similar white matter anatomy) can support the parcel's statistical significance when correcting for multiple comparisons. We propose an adaptive parcel neighborhood strategy to allow suprathreshold fiber cluster formation that is robust to anatomically varying inter-parcel distances. The method is demonstrated by application to a multi-shell diffusion MRI dataset from 59 individuals, including 30 attention deficit hyperactivity disorder patients and 29 healthy controls. Evaluations are conducted using both synthetic and in-vivo data. The results indicate that the STFC method gives greater sensitivity in finding group differences in white matter tract parcels compared to several traditional multiple comparison correction methods.
Albi A, Meola A, Zhang F, Kahali P, Rigolo L, Tax CMW, Ciris PA, Essayed WI, Unadkat P, Norton I, et al. Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects. J Neuroimaging. 2018;28 (2) :173-82.Abstract
BACKGROUND AND PURPOSE: Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. METHODS: Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. RESULTS: Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. CONCLUSIONS: Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings.
Toews M, Wells WM. Phantomless Auto-Calibration and Online Calibration Assessment for a Tracked Freehand 2-D Ultrasound Probe. IEEE Trans Med Imaging. 2018;37 (1) :262-72.Abstract
This paper presents a method for automatically calibrating and assessing the calibration quality of an externally tracked 2-D ultrasound (US) probe by scanning arbitrary, natural tissues, as opposed a specialized calibration phantom as is the typical practice. A generative topic model quantifies the posterior probability of calibration parameters conditioned on local 2-D image features arising from a generic underlying substrate. Auto-calibration is achieved by identifying the maximum a-posteriori image-to-probe transform, and calibration quality is assessed online in terms of the posterior probability of the current image-to-probe transform. Both are closely linked to the 3-D point reconstruction error (PRE) in aligning feature observations arising from the same underlying physical structure in different US images. The method is of practical importance in that it operates simply by scanning arbitrary textured echogenic structures, e.g., in-vivo tissues in the context of the US-guided procedures, without requiring specialized calibration procedures or equipment. Observed data take the form of local scale-invariant features that can be extracted and fit to the model in near real-time. Experiments demonstrate the method on a public data set of in vivo human brain scans of 14 unique subjects acquired in the context of neurosurgery. Online calibration assessment can be performed at approximately 3 Hz for the US images of pixels. Auto-calibration achieves an internal mean PRE of 1.2 mm and a discrepancy of [2 mm, 6 mm] in comparison to the calibration via a standard phantom-based method.
Stefanik L, Erdman L, Ameis SH, Foussias G, Mulsant BH, Behdinan T, Goldenberg A, O'Donnell LJ, Voineskos AN. Brain-Behavior Participant Similarity Networks Among Youth and Emerging Adults with Schizophrenia Spectrum, Autism Spectrum, or Bipolar Disorder and Matched Controls. Neuropsychopharmacology. 2018;43 (5) :1180-8.Abstract
There is considerable heterogeneity in social cognitive and neurocognitive performance among people with schizophrenia spectrum disorders (SSD), autism spectrum disorders (ASD), bipolar disorder (BD), and healthy individuals. This study used Similarity Network Fusion (SNF), a novel data-driven approach, to identify participant similarity networks based on relationships among demographic, brain imaging, and behavioral data. T1-weighted and diffusion-weighted magnetic resonance images were obtained for 174 adolescents and young adults (aged 16-35 years) with an SSD (n=51), an ASD without intellectual disability (n=38), euthymic BD (n=34), and healthy controls (n=51). A battery of social cognitive and neurocognitive tasks were administered. Data integration, cluster determination, and biological group formation were then obtained using SNF. We identified four new groups of individuals, each with distinct neural circuit-cognitive profiles. The most influential variables driving the formation of the new groups were robustly reliable across embedded resampling techniques. The data-driven groups showed considerably greater differentiation on key social and neurocognitive circuit nodes than groups generated by diagnostic analyses or dimensional social cognitive analyses. The data-driven groups were validated through functional outcome and brain network property measures not included in the SNF model. Cutting across diagnostic boundaries, our approach can effectively identify new groups of people based on a profile of neuroimaging and behavioral data. Our findings bring us closer to disease subtyping that can be leveraged toward the targeting of specific neural circuitry among participant subgroups to ameliorate social cognitive and neurocognitive deficits.
Zhang F, Savadjiev P, Cai W, Song Y, Rathi Y, Tunç B, Parker D, Kapur T, Schultz RT, Makris N, et al. Whole Brain White Matter Connectivity Analysis using Machine Learning: An Application to Autism. Neuroimage. 2018;172 :826-37.Abstract
In this paper, we propose an automated white matter connectivity analysis method for machine learning classification and characterization of white matter abnormality via identification of discriminative fiber tracts. The proposed method uses diffusion MRI tractography and a data-driven approach to find fiber clusters corresponding to subdivisions of the white matter anatomy. Features extracted from each fiber cluster describe its diffusion properties and are used for machine learning. The method is demonstrated by application to a pediatric neuroimaging dataset from 149 individuals, including 70 children with autism spectrum disorder (ASD) and 79 typically developing controls (TDC). A classification accuracy of 78.33% is achieved in this cross-validation study. We investigate the discriminative diffusion features based on a two-tensor fiber tracking model. We observe that the mean fractional anisotropy from the second tensor (associated with crossing fibers) is most affected in ASD. We also find that local along-tract (central cores and endpoint regions) differences between ASD and TDC are helpful in differentiating the two groups. These altered diffusion properties in ASD are associated with multiple robustly discriminative fiber clusters, which belong to several major white matter tracts including the corpus callosum, arcuate fasciculus, uncinate fasciculus and aslant tract; and the white matter structures related to the cerebellum, brain stem, and ventral diencephalon. These discriminative fiber clusters, a small part of the whole brain tractography, represent the white matter connections that could be most affected in ASD. Our results indicate the potential of a machine learning pipeline based on white matter fiber clustering.
Gallardo G, Wells III WM, Deriche R, Wassermann D. Groupwise Structural Parcellation of the Whole Cortex: A Logistic Random Effects Model Based Approach. Neuroimage. 2018;170 :307-20.Abstract

Current theories hold that brain function is highly related to long-range physical connections through axonal bundles, namely extrinsic connectivity. However, obtaining a groupwise cortical parcellation based on extrinsic connectivity remains challenging. Current parcellation methods are computationally expensive; need tuning of several parameters or rely on ad-hoc constraints. Furthermore, none of these methods present a model for the cortical extrinsic connectivity of the cortex. To tackle these problems, we propose a parsimonious model for the extrinsic connectivity and an efficient parceling technique based on clustering of tractograms. Our technique allows the creation of single subject and groupwise parcellations of the whole cortex. The parcellations obtained with our technique are in agreement with structural and functional parcellations in the literature. In particular, the motor and sensory cortex are subdivided in agreement with the human homunculus of Penfield. We illustrate this by comparing our resulting parcels with the motor strip mapping included in the Human Connectome Project data.

Custo A, Van De Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM. Electroencephalographic Resting-State Networks: Source Localization of Microstates. Brain Connect. 2017;7 (10) :671-82.Abstract
Using electroencephalography (EEG) to elucidate the spontaneous activation of brain resting-state networks (RSNs) is nontrivial as the signal of interest is of low amplitude and it is difficult to distinguish the underlying neural sources. Using the principles of electric field topographical analysis, it is possible to estimate the meta-stable states of the brain (i.e., the resting-state topographies, so-called microstates). We estimated seven resting-state topographies explaining the EEG data set with k-means clustering (N = 164, 256 electrodes). Using a method specifically designed to localize the sources of broadband EEG scalp topographies by matching sensor and source space temporal patterns, we demonstrated that we can estimate the EEG RSNs reliably by measuring the reproducibility of our findings. After subtracting their mean from the seven EEG RSNs, we identified seven state-specific networks. The mean map includes regions known to be densely anatomically and functionally connected (superior frontal, superior parietal, insula, and anterior cingulate cortices). While the mean map can be interpreted as a "router," crosslinking multiple functional networks, the seven state-specific RSNs partly resemble and extend previous functional magnetic resonance imaging-based networks estimated as the hemodynamic correlates of four canonical EEG microstates.
Schabdach J, Wells WM, Cho M, Batmanghelich KN. A Likelihood-Free Approach for Characterizing Heterogeneous Diseases in Large-Scale Studies. Inf Process Med Imaging. 2017;10265 :170-183.Abstract
We propose a non-parametric approach for characterizing heterogeneous diseases in large-scale studies. We target diseases where multiple types of pathology present simultaneously in each subject and a more severe disease manifests as a higher level of tissue destruction. For each subject, we model theof local image descriptors as samples generated by an unknown subject-specific probability density. Instead of approximating the probability density via a parametric family, we propose to side step the parametric inference by directly estimating the divergence between subject densities. Our method maps the collection of local image descriptors to a signaturethat is used to predict a clinical measurement. We are able to interpret the prediction of the clinical variable in the population and individual levels by carefully studying the divergences. We illustrate an application this method on simulated data as well as on a large-scale lung CT study of Chronic Obstructive Pulmonary Disease (COPD). Our approach outperforms classical methods on both simulated and COPD data and demonstrates the state-of-the-art prediction on an important physiologic measure of airflow (the forced respiratory volume in one second, FEV1).
Norton I, Essayed WI, Zhang F, Pujol S, Yarmarkovich A, Golby AJ, Kindlmann G, Wasserman D, Estepar RSJ, Rathi Y, et al. SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. Cancer Res. 2017;77 (21) :e101-e103.Abstract
Diffusion MRI (dMRI) is the only noninvasive method for mapping white matter connections in the brain. We describe SlicerDMRI, a software suite that enables visualization and analysis of dMRI for neuroscientific studies and patient-specific anatomic assessment. SlicerDMRI has been successfully applied in multiple studies of the human brain in health and disease, and here, we especially focus on its cancer research applications. As an extension module of the 3D Slicer medical image computing platform, the SlicerDMRI suite enables dMRI analysis in a clinically relevant multimodal imaging workflow. Core SlicerDMRI functionality includes diffusion tensor estimation, white matter tractography with single and multi-fiber models, and dMRI quantification. SlicerDMRI supports clinical DICOM and research file formats, is open-source and cross-platform, and can be installed as an extension to 3D Slicer ( More information, videos, tutorials, and sample data are available at Cancer Res; 77(21); e101-3. ©2017 AACR.
Niethammer M, Pohl KM, Janoos F, Wells WM. Active Mean Fields for Probabilistic Image Segmentation: Connections with Chan-Vese and Rudin-Osher-Fatemi Models. SIAM J. Imaging Sci. 2017;10 (3) :1069-1103.Abstract
Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating this uncertainty is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. However, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the active mean fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model, in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the tt icgbench dataset.
Otake Y, Yokota F, Fukuda N, Takao M, Takagi S, Yamamura N, O'Donnell L, Carl-Fredrik W, Sugano N, Sato Y. Patient-Specific Skeletal Muscle Fiber Modeling from Structure Tensor Field of Clinical CT Images. Int Conf Med Image Comput Comput Assist Interv. 2017;20 (Pt1) :656-63.Abstract
We propose an optimization method for estimating patient- specific muscle fiber arrangement from clinical CT. Our approach first computes the structure tensor field to estimate local orientation, then a geometric template representing fiber arrangement is fitted using a B- spline deformation by maximizing fitness of the local orientation using a smoothness penalty. The initialization is computed with a previously proposed algorithm that takes account of only the muscle’s surface shape. Evaluation was performed using a CT volume (1.0mm3/voxel) and high resolution optical images of a serial cryosection (0.1mm3/voxel). The mean fiber distance error at the initialization of 6.00 mm was decreased to 2.78mm after the proposed optimization for the gluteus maximus muscle, and from 5.28 mm to 3.09 mm for the gluteus medius muscle. The result from 20 patient CT images suggested that the proposed algorithm reconstructed an anatomically more plausible fiber arrangement than the previous method.
Fan Z, Weining W, Lipeng N, Gloria MA, Deborah W, Gagoski B, Kiera S, Hesham M H, Yang S, Weidong C, et al. Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis. Int Conf Med Image Comput Comput Assist Interv. 2017;20 (Pt1) :556-65.Abstract
This work presents a supra-threshold fiber cluster (STFC) analysis that leverages the whole brain fiber geometry to enhance sta- tistical group difference analysis. The proposed method consists of (1) a study-specific data-driven tractography parcellation to obtain white matter (WM) tract parcels according to the WM anatomy and (2) a nonparametric permutation-based STFC test to identify significant dif- ferences between study populations (e.g. disease and healthy). The basic idea of our method is that a WM parcel’s neighborhood (parcels with similar WM anatomy) can support the parcel’s statistical significance when correcting for multiple comparisons. The method is demonstrated by application to a multi-shell diffusion MRI dataset from 59 individuals, including 30 attention deficit hyperactivity disorder (ADHD) patients and 29 healthy controls (HCs). Evaluations are conducted using both synthetic and real data. The results indicate that our STFC method gives greater sensitivity in finding group differences in WM tract parcels compared to several traditional multiple comparison correction methods.
Zhang M, Wells WM, Golland P. Probabilistic Modeling of Anatomical Variability using a Low Dimensional Parameterization of Diffeomorphisms. Med Image Anal. 2017;41 :55-62.Abstract
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space.