Multidimensional MRI Core Publications

Ohtani T, Bouix S, Lyall AE, Hosokawa T, Saito Y, Melonakos E, Westin C-F, Seidman LJ, Goldstein J, Mesholam-Gately R, et al. Abnormal White Matter Connections between Medial Frontal Regions Predict Symptoms in Patients with First Episode Schizophrenia. Cortex. 2015;71 :264-76.Abstract
INTRODUCTION: The medial orbitofrontal cortex (mOFC) and rostral part of anterior cingulate cortex (rACC) have been suggested to be involved in the neural network of salience and emotional processing, and associated with specific clinical symptoms in schizophrenia. Considering the schizophrenia dysconnectivity hypothesis, the connectivity abnormalities between mOFC and rACC might be associated with clinical characteristics in first episode schizophrenia patients (FESZ). METHODS: After parcellating mOFC into the anterior and posterior part, diffusion properties of the mOFC-rACC white matter connections for 21 patients with FESZ and 21 healthy controls (HCs) were examined using stochastic tractography, one of the most effective Diffusion Tensor Imaging (DTI) methods for examining tracts between adjacent gray matter (GM) regions. RESULTS: Fractional anisotropy (FA) reductions were observed in bilateral posterior, but not anterior mOFC-rACC connections (left: p < .0001; right: p < .0001) in FESZ compared to HCs. In addition, reduced FA in the left posterior mOFC-rACC connection was associated with more severe anhedonia-asociality (rho = -.633, p = .006) and total score (rho = -.520, p = .032) in the Scale for the Assessment of Negative Symptoms (SANS); reduced FA in the right posterior mOFC-rACC connection was associated with more severe affective flattening (rho = -.644, p = .005), total score (rho = -.535, p = .027) in SANS, hallucinations (rho = -.551, p = .018), delusions (rho = -.632, p = .005) and total score (rho = -.721, p = .001) in the Scale for the Assessment of Positive Symptoms (SAPS) in FESZ. CONCLUSIONS: The observed white matter abnormalities within the connections between mOFC and rACC might be associated with the psychopathology of the early stage of schizophrenia.
Ning L, Setsompop K, Michailovich O, Makris N, Westin C-F, Rathi Y. A Compressed-Sensing Approach for Super-Resolution Reconstruction of Diffusion MRI. Inf Process Med Imaging. 2015;24 :57-68.Abstract

We present an innovative framework for reconstructing high-spatial-resolution diffusion magnetic resonance imaging (dMRI) from multiple low-resolution (LR) images. Our approach combines the twin concepts of compressed sensing (CS) and classical super-resolution to reduce acquisition time while increasing spatial resolution. We use subpixel-shifted LR images with down-sampled and non-overlapping diffusion directions to reduce acquisition time. The diffusion signal in the high resolution (HR) image is represented in a sparsifying basis of spherical ridgelets to model complex fiber orientations with reduced number of measurements. The HR image is obtained as the solution of a convex optimization problem which can be solved using the proposed algorithm based on the alternating direction method of multipliers (ADMM). We qualitatively and quantitatively evaluate the performance of our method on two sets of in-vivo human brain data and show its effectiveness in accurately recovering very high resolution diffusion images.

Pujol S, Wells III WM, Pierpaoli C, Brun C, Gee J, Cheng G, Vemuri B, Commowick O, Prima S, Stamm A, et al. The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery. J Neuroimaging. 2015;25 (6) :875-82.Abstract
BACKGROUND AND PURPOSE: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop. METHODS: Eight international teams from leading institutions reconstructed the pyramidal tract in four neurosurgical cases presenting with a glioma near the motor cortex. Tractography methods included deterministic, probabilistic, filtered, and global approaches. Standardized evaluation of the tracts consisted in the qualitative review of the pyramidal pathways by a panel of neurosurgeons and DTI experts and the quantitative evaluation of the degree of agreement among methods. RESULTS: The evaluation of tractography reconstructions showed a great interalgorithm variability. Although most methods found projections of the pyramidal tract from the medial portion of the motor strip, only a few algorithms could trace the lateral projections from the hand, face, and tongue area. In addition, the structure of disagreement among methods was similar across hemispheres despite the anatomical distortions caused by pathological tissues. CONCLUSIONS: The DTI Challenge provides a benchmark for the standardized evaluation of tractography methods on neurosurgical data. This study suggests that there are still limitations to the clinical use of tractography for neurosurgical decision making.
Sjölund J, Szczepankiewicz F, Nilsson M, Topgaard D, Westin C-F, Knutsson H. Constrained Optimization of Gradient Waveforms for Generalized Diffusion Encoding. J Magn Reson. 2015;261 :157-68.Abstract

Diffusion MRI is a useful probe of tissue microstructure. The conventional diffusion encoding sequence, the single pulsed field gradient, has recently been challenged as more general gradient waveforms have been introduced. Out of these, we focus on q-space trajectory imaging, which generalizes the scalar b-value to a tensor valued entity. To take full advantage of its capabilities, it is imperative to respect the constraints imposed by the hardware, while at the same time maximizing the diffusion encoding strength. We provide a tool that achieves this by solving a constrained optimization problem that accommodates constraints on maximum gradient amplitude, slew rate, coil heating and positioning of radio frequency pulses. The method's efficacy and flexibility is demonstrated both experimentally and by comparison with previous work on optimization of isotropic diffusion sequences.

Maier-Hein KH, Westin C-F, Shenton ME, Weiner MW, Raj A, Thomann P, Kikinis R, Stieltjes B, Pasternak O. Widespread White Matter Degeneration Preceding the Onset of Dementia. Alzheimers Dement. 2015;11 (5) :485-93.Abstract

BACKGROUND: Brain atrophy in subjects with mild cognitive impairment (MCI) introduces partial volume effects, limiting the sensitivity of diffusion tensor imaging to white matter microstructural degeneration. Appropriate correction isolates microstructural effects in MCI that might be precursors of Alzheimer's disease (AD). METHODS: Forty-eight participants (18 MCI, 15 AD, and 15 healthy controls) had magnetic resonance imaging scans and clinical evaluations at baseline and follow-up after 36 months. Ten MCI subjects were diagnosed with AD at follow-up and eight remained MCI. Free-water (FW) corrected measures on the white matter skeleton were compared between groups. RESULTS: FW corrected radial diffusivity, but not uncorrected radial diffusivity, was increased across the brain of the converted group compared with the nonconverted group (P < .05). The extent of increases was similar to that found comparing AD with controls. CONCLUSION: Partial volume elimination reveals microstructural alterations preceding dementia. These alterations may prove to be an effective and feasible early biomarker of AD.

Savadjiev P, Whitford TJ, Hough ME, Clemm von Hohenberg C, Bouix S, Westin C-F, Shenton ME, Crow TJ, A J, Kubicki M. Sexually Dimorphic White Matter Geometry Abnormalities in Adolescent Onset Schizophrenia. Cereb Cortex. 2014;24 (5) :1389-96.Abstract

The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.

Rathi Y, Pasternak O, Savadjiev P, Michailovich OV, Bouix S, Kubicki M, Westin C-F, Makris N, Shenton ME. Gray Matter Alterations in Early Aging: A Diffusion Magnetic Resonance Imaging Study. Hum Brain Mapp. 2014;35 (8) :3841-56.Abstract

Many studies have observed altered neurofunctional and structural organization in the aging brain. These observations from functional neuroimaging studies show a shift in brain activity from the posterior to the anterior regions with aging (PASA model), as well as a decrease in cortical thickness, which is more pronounced in the frontal lobe followed by the parietal, occipital, and temporal lobes (retrogenesis model). However, very little work has been done using diffusion MRI (dMRI) with respect to examining the structural tissue alterations underlying these neurofunctional changes in the gray matter. Thus, for the first time, we propose to examine gray matter changes using diffusion MRI in the context of aging. In this work, we propose a novel dMRI based measure of gray matter "heterogeneity" that elucidates these functional and structural models (PASA and retrogenesis) of aging from the viewpoint of diffusion MRI. In a cohort of 85 subjects (all males, ages 15-55 years), we show very high correlation between age and "heterogeneity" (a measure of structural layout of tissue in a region-of-interest) in specific brain regions. We examine gray matter alterations by grouping brain regions into anatomical lobes as well as functional zones. Our findings from dMRI data connects the functional and structural domains and confirms the "retrogenesis" hypothesis of gray matter alterations while lending support to the neurofunctional PASA model of aging in addition to showing the preservation of paralimbic areas during healthy aging.

Preti MG, Makris N, Papadimitriou G, Laganà MM, Griffanti L, Clerici M, Nemni R, Westin C-F, Baselli G, Baglio F. A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease. PLoS One. 2014;9 (3) :e92026.Abstract
Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimer's disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease.
Rathi Y, Michailovich O, Laun F, Setsompop K, Grant PE, Westin C-F. Multi-shell Diffusion Signal Recovery from Sparse Measurements. Med Image Anal. 2014;18 (7) :1143-56.Abstract
For accurate estimation of the ensemble average diffusion propagator (EAP), traditional multi-shell diffusion imaging (MSDI) approaches require acquisition of diffusion signals for a range of b-values. However, this makes the acquisition time too long for several types of patients, making it difficult to use in a clinical setting. In this work, we propose a new method for the reconstruction of diffusion signals in the entire q-space from highly undersampled sets of MSDI data, thus reducing the scan time significantly. In particular, to sparsely represent the diffusion signal over multiple q-shells, we propose a novel extension to the framework of spherical ridgelets by accurately modeling the monotonically decreasing radial component of the diffusion signal. Further, we enforce the reconstructed signal to have smooth spatial regularity in the brain, by minimizing the total variation (TV) norm. We combine these requirements into a novel cost function and derive an optimal solution using the Alternating Directions Method of Multipliers (ADMM) algorithm. We use a physical phantom data set with known fiber crossing angle of 45° to determine the optimal number of measurements (gradient directions and b-values) needed for accurate signal recovery. We compare our technique with a state-of-the-art sparse reconstruction method (i.e., the SHORE method of Cheng et al. (2010)) in terms of angular error in estimating the crossing angle, incorrect number of peaks detected, normalized mean squared error in signal recovery as well as error in estimating the return-to-origin probability (RTOP). Finally, we also demonstrate the behavior of the proposed technique on human in vivo data sets. Based on these experiments, we conclude that using the proposed algorithm, at least 60 measurements (spread over three b-value shells) are needed for proper recovery of MSDI data in the entire q-space.
Savadjiev P, Rathi Y, Bouix S, Smith AR, Schultz RT, Verma R, Westin C-F. Fusion of White and Gray Matter Geometry: A Framework for Investigating Brain Development. Med Image Anal. 2014;18 (8) :1349-60.Abstract
Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a result, it is not clear how to combine findings from these two types of approaches in order to obtain a consistent picture of morphological changes in both gray and white matter. In this paper, we propose a joint investigation of gray and white matter morphology by combining geometrical information from white and the gray matter. To achieve this, we first introduce a novel method for computing multi-scale white matter tract geometry. Its formulation is based on the differential geometry of curve sets and is easily incorporated into a continuous scale-space framework. We then incorporate this method into a novel framework for "fusing" white and gray matter geometrical information. Given a set of fiber tracts originating in a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. A quantitative marker is created by combining the distributions of these scalar values using Mutual Information. This marker can be then used in the study of normal and pathological brain structure and development. We apply this framework to a study on autism spectrum disorder in children. Our preliminary results support the view that autism may be characterized by early brain overgrowth, followed by reduced or arrested growth (Courchesne, 2004).
Westin C-F, Szczepankiewicz F, Pasternak O, Ozarslan E, Topgaard D, Knutsson H, Nilsson M. Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding. Med Image Comput Comput Assist Interv. 2014;17 (Pt 3) :209-16.Abstract
In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).
Knutsson H, Westin C-F. From Expected Propagator Distribution to Optimal Q-Space Sample Metric. Med Image Comput Comput Assist Interv. 2014;17 (Pt 3) :217-24.Abstract
We present a novel approach to determine a local q-space metric that is optimal from an information theoreticperspective with respect to the expected signal statistics. It should be noted that the approach does not attempt to optimize the quality of a pre-defined mathematical representation, the estimator. In contrast, our suggestion aims at obtaining the maximum amount of information without enforcing a particular feature representation. Results for three significantly different average propagator distributions are presented. The results show that the optimal q-space metric has a strong dependence on the assumed distribution in the targeted tissue. In many practical cases educated guesses can be made regarding the average propagator distribution present. In such cases the presented analysis can produce a metric that is optimal with respect to this distribution. The metric will be different at different q-space locations and is defined by the amount of additional information that is obtained when adding a second sample at a given offset from a first sample. The intention is to use the obtained metric as a guide for the generation of specific efficient q-space sample distributions for the targeted tissue.
Rathi Y, Ning L, Michailovich O, Liao HJ, Gagoski B, Grant EP, Shenton ME, Stern R, Westin C-F, Lin A. Maximum Entropy Estimation of Glutamate and Glutamine in MR Spectroscopic Imaging. Med Image Comput Comput Assist Interv. 2014;17 (Pt 2) :749-56.Abstract
Magnetic resonance spectroscopic imaging (MRSI) is often used to estimate the concentration of several brain metabolites. Abnormalities in these concentrations can indicate specific pathology, which can be quite useful in understanding the disease mechanism underlying those changes. Due to higher concentration, metabolites such as N-acetylaspartate (NAA), Creatine (Cr) and Choline (Cho) can be readily estimated using standard Fourier transform techniques. However, metabolites such as Glutamate (Glu) and Glutamine (Gln) occur in significantly lower concentrations and their resonance peaks are very close to each other making it difficult to accurately estimate their concentrations (separately). In this work, we propose to use the theory of 'Spectral Zooming' or high-resolution spectral analysis to separate the Glutamate and Glutamine peaks and accurately estimate their concentrations. The method works by estimating a unique power spectral density, which corresponds to the maximum entropy solution of a zero-mean stationary Gaussian process. We demonstrate our estimation technique on several physical phantom data sets as well as on in-vivo brain spectroscopic imaging data. The proposed technique is quite general and can be used to estimate the concentration of any other metabolite of interest.
Rathi Y, Niethammer M, Laun F, Setsompop K, Michailovich OV, Grant EP, Carl-Fredrik W. Diffusion Propagator Estimation using Radial Basis Functions. Int Conf Med Image Comput Comput Assist Interv. 2013;16 (WS) :161-70.Abstract
The average diffusion propagator (ADP) obtained from diffusion MRI (dMRI) data encapsulates important structural properties of the underlying tissue. Measures derived from the ADP can be potentially used as markers of tissue integrity in characterizing several mental disorders. Thus, accurate estimation of the ADP is imperative for its use in neuroimaging studies. In this work, we propose a simple method for estimating the ADP by representing the acquired diffusion signal in the entire q-space using radial basis functions (RBF). We demonstrate our technique using two different RBF’s (generalized inverse multiquadric and Gaussian) and derive analytical expressions for the corresponding ADP’s. We also derive expressions for computing the solid angle orientation distribution function (ODF) for each of the RBF’s. Estimation of the weights of the RBF’s is done by enforcing positivity constraint on the estimated ADP or ODF. Finally, we validate our method on data obtained from a physical phantom with known fiber crossing of 45 degrees and also show comparison with the solid spherical harmonics method of [7]. We also demonstrate our method on in-vivo human brain data.
Rathi Y, Gagoski B, Setsompop K, Grant EP, Carl-Fredrik W. Comparing Simultaneous Multi-slice Diffusion Acquisitions. Int Conf Med Image Comput Comput Assist Interv. 2013;16 (WS) :105-14.Abstract
Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-invasive investigation of the neural architecture of the brain. Advanced dMRI protocols typically require a large number of measurements for accurately tracing the fiber bundles and estimating the diffusion properties (such as, FA). However, the acquisition time of these sequences is prohibitively large for pediatric as well as patients with certain types of brain disorders (such as, dementia). Thus, fast echo-planar imaging (EPI) acquisition sequences were proposed by the authors in [6, 16], which acquired multiple slices simultaneously to reduce scan time. The scan time in such cases drops proportionately to the number of simultaneous slice acquisitions (which we denote by R). While preliminary results in [6, 16] showed good reproducibility, yet the effect of simultaneous acquisitions on long range fiber connectivity and diffusion measures such as FA, is not known. In this work, we use multi-tensor based fiber connectivity to compare data acquired on two subjects with different acceleration factors (R = 1, 2, 3). We investigate and report the reproducibility of fiber bundles and diffusion measures between these scans on two subjects with different spatial resolutions, which is quite useful while designing neuroimaging studies.

Pages