Multidimensional MRI Core Publications

Maier-Hein KH, Neher PF, Houde J-C, Côté M-A, Garyfallidis E, Zhong J, Chamberland M, Yeh F-C, Lin Y-C, Ji Q, et al. The Challenge of Mapping the Human Connectome Based on Diffusion Tractography. Nat Commun. 2017;8 (1) :1349.Abstract
Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.
Norton I, Essayed WI, Zhang F, Pujol S, Yarmarkovich A, Golby AJ, Kindlmann G, Wasserman D, Estepar RSJ, Rathi Y, et al. SlicerDMRI: Open Source Diffusion MRI Software for Brain Cancer Research. Cancer Res. 2017;77 (21) :e101-e103.Abstract
Diffusion MRI (dMRI) is the only noninvasive method for mapping white matter connections in the brain. We describe SlicerDMRI, a software suite that enables visualization and analysis of dMRI for neuroscientific studies and patient-specific anatomic assessment. SlicerDMRI has been successfully applied in multiple studies of the human brain in health and disease, and here, we especially focus on its cancer research applications. As an extension module of the 3D Slicer medical image computing platform, the SlicerDMRI suite enables dMRI analysis in a clinically relevant multimodal imaging workflow. Core SlicerDMRI functionality includes diffusion tensor estimation, white matter tractography with single and multi-fiber models, and dMRI quantification. SlicerDMRI supports clinical DICOM and research file formats, is open-source and cross-platform, and can be installed as an extension to 3D Slicer ( More information, videos, tutorials, and sample data are available at Cancer Res; 77(21); e101-3. ©2017 AACR.
Otake Y, Yokota F, Fukuda N, Takao M, Takagi S, Yamamura N, O'Donnell L, Carl-Fredrik W, Sugano N, Sato Y. Patient-Specific Skeletal Muscle Fiber Modeling from Structure Tensor Field of Clinical CT Images. Int Conf Med Image Comput Comput Assist Interv. 2017;20 (Pt1) :656-63.Abstract
We propose an optimization method for estimating patient- specific muscle fiber arrangement from clinical CT. Our approach first computes the structure tensor field to estimate local orientation, then a geometric template representing fiber arrangement is fitted using a B- spline deformation by maximizing fitness of the local orientation using a smoothness penalty. The initialization is computed with a previously proposed algorithm that takes account of only the muscle’s surface shape. Evaluation was performed using a CT volume (1.0mm3/voxel) and high resolution optical images of a serial cryosection (0.1mm3/voxel). The mean fiber distance error at the initialization of 6.00 mm was decreased to 2.78mm after the proposed optimization for the gluteus maximus muscle, and from 5.28 mm to 3.09 mm for the gluteus medius muscle. The result from 20 patient CT images suggested that the proposed algorithm reconstructed an anatomically more plausible fiber arrangement than the previous method.
Lipeng N, Rathi Y. Dynamic Regression for Partial Correlation and Causality Analysis of Functional Brain Networks. Int Conf Med Image Comput Comput Assist Interv. 2017;20 (Pt1) :365-72.Abstract
We propose a general dynamic regression framework for partial correlation and causality analysis of functional brain networks. Using the optimal prediction theory, we present the solution of the dynamic regression problem by minimizing the entropy of the associated stochastic process. We also provide the relation between the solutions and the linear dependence models of Geweke and Granger and derive novel expressions for computing partial correlation and causality using an optimal prediction filter with minimum error variance. We use the proposed dynamic framework to study the intrinsic partial correlation and causal- ity between seven different brain networks using resting state functional MRI (rsfMRI) data from the Human Connectome Project (HCP) and compare our results with those obtained from standard correlation and causality measures. The results show that our optimal prediction filter explains a significant portion of the variance in the rsfMRI data at low frequencies, unlike standard partial correlation analysis.
Fan Z, Weining W, Lipeng N, Gloria MA, Deborah W, Gagoski B, Kiera S, Hesham M H, Yang S, Weidong C, et al. Supra-Threshold Fiber Cluster Statistics for Data-Driven Whole Brain Tractography Analysis. Int Conf Med Image Comput Comput Assist Interv. 2017;20 (Pt1) :556-65.Abstract
This work presents a supra-threshold fiber cluster (STFC) analysis that leverages the whole brain fiber geometry to enhance sta- tistical group difference analysis. The proposed method consists of (1) a study-specific data-driven tractography parcellation to obtain white matter (WM) tract parcels according to the WM anatomy and (2) a nonparametric permutation-based STFC test to identify significant dif- ferences between study populations (e.g. disease and healthy). The basic idea of our method is that a WM parcel’s neighborhood (parcels with similar WM anatomy) can support the parcel’s statistical significance when correcting for multiple comparisons. The method is demonstrated by application to a multi-shell diffusion MRI dataset from 59 individuals, including 30 attention deficit hyperactivity disorder (ADHD) patients and 29 healthy controls (HCs). Evaluations are conducted using both synthetic and real data. The results indicate that our STFC method gives greater sensitivity in finding group differences in WM tract parcels compared to several traditional multiple comparison correction methods.
Ji F, Pasternak O, Liu S, Loke YM, Choo BL, Hilal S, Xu X, Ikram MK, Venketasubramanian N, Chen CL-H, et al. Distinct White Matter Microstructural Abnormalities and Extracellular Water Increases Relate to Cognitive Impairment in Alzheimer's Disease with And without Cerebrovascular Disease. Alzheimers Res Ther. 2017;9 (1) :63.Abstract
BACKGROUND: Mixed vascular and neurodegenerative dementia, such as Alzheimer's disease (AD) with concomitant cerebrovascular disease, has emerged as the leading cause of age-related cognitive impairment. The brain white matter (WM) microstructural changes in neurodegeneration well-documented by diffusion tensor imaging (DTI) can originate from brain tissue or extracellular free water changes. The differential microstructural and free water changes in AD with and without cerebrovascular disease, especially in normal-appearing WM, remain largely unknown. To cover these gaps, we aimed to characterize the WM free water and tissue microstructural changes in AD and mixed dementia as well as their associations with cognition using a novel free water imaging method. METHODS: We compared WM free water and free water-corrected DTI measures as well as white matter hyperintensity (WMH) in patients with AD with and without cerebrovascular disease, patients with vascular dementia, and age-matched healthy control subjects. RESULTS: The cerebrovascular disease groups had higher free water than the non-cerebrovascular disease groups. Importantly, besides the cerebrovascular disease groups, patients with AD without cerebrovascular disease also had increased free water in normal-appearing WM compared with healthy control subjects, reflecting mild vascular damage. Such free water increases in WM or normal-appearing WM (but not WMH) contributed to dementia severity. Whole-brain voxel-wise analysis revealed a close association between widespread free water increases and poorer attention, executive functioning, visual construction, and motor performance, whereas only left hemispheric free water increases were related to language deficits. Moreover, compared with the original DTI metrics, the free water-corrected DTI metric revealed tissue damage-specific (frontal and occipital) microstructural differences between the cerebrovascular disease and non-cerebrovascular disease groups. In contrast to both lobar and subcortical/brainstem free water increases, only focal lobar microstructural damage was associated with poorer cognitive performance. CONCLUSIONS: Our findings suggest that free water analysis isolates probable mild vascular damage from WM microstructural alterations and underscore the importance of normal-appearing WM changes underlying cognitive and functional impairment in AD with and without cerebrovascular disease. Further developed, the combined free water and tissue neuroimaging assays could help in differential diagnosis, treatment planning, and disease monitoring of patients with mixed dementia.
Kikinis Z, Muehlmann M, Pasternak O, Peled S, Kulkarni P, Ferris C, Bouix S, Rathi Y, Koerte IK, Pieper S, et al. Diffusion Imaging of Mild Traumatic Brain Injury in the Impact Accelerated Rodent Model: A Pilot Study. Brain Inj. 2017;31 (10) :1376-81.Abstract
PRIMARY OBJECTIVE: There is a need to understand pathologic processes of the brain following mild traumatic brain injury (mTBI). Previous studies report axonal injury and oedema in the first week after injury in a rodent model. This study aims to investigate the processes occurring 1 week after injury at the time of regeneration and degeneration using diffusion tensor imaging (DTI) in the impact acceleration rat mTBI model. RESEARCH DESIGN: Eighteen rats were subjected to impact acceleration injury, and three rats served as sham controls. Seven days post injury, DTI was acquired from fixed rat brains using a 7T scanner. Group comparison of Fractional Anisotropy (FA) values between traumatized and sham animals was performed using Tract-Based Spatial Statistics (TBSS), a method that we adapted for rats. MAIN OUTCOMES AND RESULTS: TBSS revealed white matter regions of the brain with increased FA values in the traumatized versus sham rats, localized mainly to the contrecoup region. Regions of increased FA included the pyramidal tract, the cerebral peduncle, the superior cerebellar peduncle and to a lesser extent the fibre tracts of the corpus callosum, the anterior commissure, the fimbria of the hippocampus, the fornix, the medial forebrain bundle and the optic chiasm. CONCLUSION: Seven days post injury, during the period of tissue reparation in the impact acceleration rat model of mTBI, microstructural changes to white matter can be detected using DTI.
Essayed WI, Zhang F, Unadkat P, Cosgrove RG, Golby AJ, O'Donnell LJ. White Matter Tractography for Neurosurgical Planning: A Topography-based Review of the Current State of the Art. Neuroimage Clin. 2017;15 :659-72.Abstract
We perform a review of the literature in the field of white matter tractography for neurosurgical planning, focusing on those works where tractography was correlated with clinical information such as patient outcome, clinical functional testing, or electro-cortical stimulation. We organize the review by anatomical location in the brain and by surgical procedure, including both supratentorial and infratentorial pathologies, and excluding spinal cord applications. Where possible, we discuss implications of tractography for clinical care, as well as clinically relevant technical considerations regarding the tractography methods. We find that tractography is a valuable tool in variable situations in modern neurosurgery. Our survey of recent reports demonstrates multiple potentially successful applications of white matter tractography in neurosurgery, with progress towards overcoming clinical challenges of standardization and interpretation.
Koppelmans V, Pasternak O, Bloomberg JJ, Dios YDE, Wood SJ, Riascos R, Reuter-Lorenz PA, Kofman IS, Mulavara AP, Seidler RD. Intracranial Fluid Redistribution but No White Matter Microstructural Changes During a Spaceflight Analog. Sci Rep. 2017;7 (1) :3154.Abstract
The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and axial body unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6° HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n = 12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging was used to quantify distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreases in the post-central gyrus and precuneus correlated negatively with balance changes. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.
Nilsson M, Lasič S, Drobnjak I, Topgaard D, Westin C-F. Resolution Limit of Cylinder Diameter Estimation by Diffusion MRI: The Impact of Gradient Waveform and Orientation Dispersion. NMR Biomed. 2017;30 (7).Abstract
Diffusion MRI has been proposed as a non-invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra-axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square-wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60-80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm.
Tax CMW, Westin C-F, Dela Haije T, Fuster A, Viergever MA, Calabrese E, Florack L, Leemans A. Quantifying the Brain's Sheet Structure with Normalized Convolution. Med Image Anal. 2017;39 :162-77.Abstract
The hypothesis that brain pathways form 2D sheet-like structures layered in 3D as "pages of a book" has been a topic of debate in the recent literature. This hypothesis was mainly supported by a qualitative evaluation of "path neighborhoods" reconstructed with diffusion MRI (dMRI) tractography. Notwithstanding the potentially important implications of the sheet structure hypothesis for our understanding of brain structure and development, it is still considered controversial by many for lack of quantitative analysis. A means to quantify sheet structure is therefore necessary to reliably investigate its occurrence in the brain. Previous work has proposed the Lie bracket as a quantitative indicator of sheet structure, which could be computed by reconstructing path neighborhoods from the peak orientations of dMRI orientation density functions. Robust estimation of the Lie bracket, however, is challenging due to high noise levels and missing peak orientations. We propose a novel method to estimate the Lie bracket that does not involve the reconstruction of path neighborhoods with tractography. This method requires the computation of derivatives of the fiber peak orientations, for which we adopt an approach called normalized convolution. With simulations and experimental data we show that the new approach is more robust with respect to missing peaks and noise. We also demonstrate that the method is able to quantify to what extent sheet structure is supported for dMRI data of different species, acquired with different scanners, diffusion weightings, dMRI sampling schemes, and spatial resolutions. The proposed method can also be used with directional data derived from other techniques than dMRI, which will facilitate further validation of the existence of sheet structure.
Rydhög AS, Szczepankiewicz F, Wirestam R, Ahlgren A, Westin C-F, Knutsson L, Pasternak O. Separating Blood and Water: Perfusion and Free Water Elimination from Diffusion MRI in the Human Brain. Neuroimage. 2017;156 :423-34.Abstract
The assessment of the free water fraction in the brain provides important information about extracellular processes such as atrophy and neuroinflammation in various clinical conditions as well as in normal development and aging. Free water estimates from diffusion MRI are assumed to account for freely diffusing water molecules in the extracellular space, but may be biased by other pools of molecules in rapid random motion, such as the intravoxel incoherent motion (IVIM) of blood, where water molecules perfuse in the randomly oriented capillary network. The goal of this work was to separate the signal contribution of the perfusing blood from that of free-water and of other brain diffusivities. The influence of the vascular compartment on the estimation of the free water fraction and other diffusivities was investigated by simulating perfusion in diffusion MRI data. The perfusion effect in the simulations was significant, especially for the estimation of the free water fraction, and was maintained as long as low b-value data were included in the analysis. Two approaches to reduce the perfusion effect were explored in this study: (i) increasing the minimal b-value used in the fitting, and (ii) using a three-compartment model that explicitly accounts for water molecules in the capillary blood. Estimation of the model parameters while excluding low b-values reduced the perfusion effect but was highly sensitive to noise. The three-compartment model fit was more stable and additionally, provided an estimation of the volume fraction of the capillary blood compartment. The three-compartment model thus disentangles the effects of free water diffusion and perfusion, which is of major clinical importance since changes in these components in the brain may indicate different pathologies, i.e., those originating from the extracellular space, such as neuroinflammation and atrophy, and those related to the vascular space, such as vasodilation, vasoconstriction and capillary density. Diffusion MRI data acquired from a healthy volunteer, using multiple b-shells, demonstrated an expected non-zero contribution from the blood fraction, and indicated that not accounting for the perfusion effect may explain the overestimation of the free water fraction evinced in previous studies. Finally, the applicability of the method was demonstrated with a dataset acquired using a clinically feasible protocol with shorter acquisition time and fewer b-shells.
Albi A, Pasternak O, Minati L, Marizzoni M, Bartrés-Faz D, Bargalló N, Bosch B, Rossini PM, Marra C, Müller B, et al. Free Water Elimination Improves Test-Retest Reproducibility of Diffusion Tensor Imaging Indices in the Brain: A Longitudinal Multisite Study of Healthy Elderly Subjects. Hum Brain Mapp. 2017;38 (1) :12-26.Abstract

Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. © 2016 Wiley Periodicals, Inc.

Herberthson M, Özarslan E, Knutsson H, Westin C-F. Dynamics of Local Magnetization in the Eigenbasis of the Bloch-Torrey Operator. J Chem Phys. 2017;146 (12) :124201.Abstract

We consider diffusion within pores with general shapes in the presence of spatially linear magnetic field profiles. The evolution of local magnetization of the spin bearing particles can be described by the Bloch-Torrey equation. We study the diffusive process in the eigenbasis of the non-Hermitian Bloch-Torrey operator. It is possible to find expressions for some special temporal gradient waveforms employed to sensitize the nuclear magnetic resonance (NMR) signal to diffusion. For more general gradient waveforms, we derive an efficient numerical solution by introducing a novel matrix formalism. Compared to previous methods, this new approach requires a fewer number of eigenfunctions to achieve the same accuracy. This shows that these basis functions are better suited to the problem studied. The new framework could provide new important insights into the fundamentals of diffusion sensitization, which could further the development of the field of NMR.

Ning L, Özarslan E, Westin C-F, Rathi Y. Precise Inference and Characterization of Structural Organization (PICASO) of Tissue from Molecular Diffusion. Neuroimage. 2017;146 :452-73.Abstract

Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons.