Multidimensional MRI Core Publications

Seitz-Holland J, Seethaler M, Makris N, Rushmore J, Cho K-IK, Rizzoni E, Vangel M, Sahin OS, Heller C, Pasternak O, et al. The Association of Matrix Metalloproteinase 9 (MMP9) With Hippocampal Volume in Schizophrenia: A Preliminary MRI Study. Neuropsychopharmacology. 2022;47 (2) :524-30.Abstract
Matrix metalloproteinases 9 (MMP9) are enzymes involved in regulating neuroplasticity in the hippocampus. This, combined with evidence for disrupted hippocampal structure and function in schizophrenia, has prompted our current investigation into the relationship between MMP9 and hippocampal volumes in schizophrenia. 34 healthy individuals (mean age = 32.50, male = 21, female = 13) and 30 subjects with schizophrenia (mean age = 33.07, male = 19, female = 11) underwent a blood draw and T1-weighted magnetic resonance imaging. The hippocampus was automatically segmented utilizing FreeSurfer. MMP9 plasma levels were measured with ELISA. ANCOVAs were conducted to compare MMP9 plasma levels (corrected for age and sex) and hippocampal volumes between groups (corrected for age, sex, total intracranial volume). Spearman correlations were utilized to investigate the relationship between symptoms, medication, duration of illness, number of episodes, and MMP9 plasma levels in patients. Last, we explored the correlation between MMP9 levels and hippocampal volumes in patients and healthy individuals separately. Patients displayed higher MMP9 plasma levels than healthy individuals (F(1, 60) = 21.19, p < 0.0001). MMP9 levels correlated with negative symptoms in patients (R = 0.39, p = 0.035), but not with medication, duration of illness, or the number of episodes. Further, patients had smaller left (F(1,59) = 9.12, p = 0.0040) and right (F(1,59) = 6.49, p = 0.013) hippocampal volumes. Finally, left (R = -0.39, p = 0.034) and right (R = -0.37, p = 0.046) hippocampal volumes correlated negatively with MMP9 plasma levels in patients. We observe higher MMP9 plasma levels in SCZ, associated with lower hippocampal volumes, suggesting involvement of MMP9 in the pathology of SCZ. Future studies are needed to investigate how MMP9 influences the pathology of SCZ over the lifespan, whether the observed associations are specific for schizophrenia, and if a therapeutic modulation of MMP9 promotes neuroprotective effects in SCZ.
Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh C-H, Zhao T, O'Donnell LJ. Quantitative Mapping of the Brain's Structural Connectivity Using Diffusion MRI Tractography: A Review. Neuroimage. 2022;249 :118870.Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain's white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain's structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain's structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification. For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain's white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the "best" methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
Ji Y, Hoge WS, Gagoski B, Westin C-F, Rathi Y, Ning L. Accelerating Joint Relaxation-Diffusion MRI by Integrating Time Division Multiplexing and Simultaneous Multi-Slice (TDM-SMS) Strategies. Magn Reson Med. 2022;87 (6) :2697-709.Abstract
PURPOSE: To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS: The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS: Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS: The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.
Brabec J, Szczepankiewicz F, Lennartsson F, Englund E, Pebdani H, Bengzon J, Knutsson L, Westin C-F, Sundgren PC, Nilsson M. Histogram Analysis of Tensor-Valued Diffusion MRI in Meningiomas: Relation to Consistency, Histological Grade and Type. Neuroimage Clin. 2022;33 :102912.Abstract
BACKGROUND: Preoperative radiological assessment of meningioma characteristics is of value for pre- and post-operative patient management, counselling, and surgical approach. PURPOSE: To investigate whether tensor-valued diffusion MRI can add to the preoperative prediction of meningioma consistency, grade and type. MATERIALS AND METHODS: 30 patients with intracranial meningiomas (22 WHO grade I, 8 WHO grade II) underwent MRI prior to surgery. Diffusion MRI was performed with linear and spherical b-tensors with b-values up to 2000 s/mm2. The data were used to estimate mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and its components-the anisotropic and isotropic kurtoses (MKA and MKI). Meningioma consistency was estimated for 16 patients during resection based on ultrasonic aspiration intensity, ease of resection with instrumentation or suction. Grade and type were determined by histopathological analysis. The relation between consistency, grade and type and dMRI parameters was analyzed inside the tumor ("whole-tumor") and within brain tissue in the immediate periphery outside the tumor ("rim") by histogram analysis. RESULTS: Lower 10th percentiles of MK and MKA in the whole-tumor were associated with firm consistency compared with pooled soft and variable consistency (n = 7 vs 9; U test, p = 0.02 for MKA 10 and p = 0.04 for MK10) and lower 10th percentile of MD with variable against soft and firm (n = 5 vs 11; U test, p = 0.02). Higher standard deviation of MKI in the rim was associated with lower grade (n = 22 vs 8; U test, p = 0.04) and in the MKI maps we observed elevated rim-like structure that could be associated with grade. Higher median MKA and lower median MKI distinguished psammomatous type from other pooled meningioma types (n = 5 vs 25; U test; p = 0.03 for MKA 50 and p = 0.03 and p = 0.04 for MKI 50). CONCLUSION: Parameters from tensor-valued dMRI can facilitate prediction of consistency, grade and type.
Zekelman LR, Zhang F, Makris N, He J, Chen Y, Xue T, Liera D, Drane DL, Rathi Y, Golby AJ, et al. White Matter Association Tracts Underlying Language and Theory of Mind: An Investigation of 809 Brains from the Human Connectome Project. Neuroimage. 2022;246 :118739.Abstract
Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The mean fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.
Lampinen B, Lätt J, Wasselius J, van Westen D, Nilsson M. Time Dependence in Diffusion MRI Predicts Tissue Outcome in Ischemic Stroke Patients. Magn Reson Med. 2021;86 (2) :754-64.Abstract
PURPOSE: Reperfusion therapy enables effective treatment of ischemic stroke presenting within 4-6 hours. However, tissue progression from ischemia to infarction is variable, and some patients benefit from treatment up until 24 hours. Improved imaging techniques are needed to identify these patients. Here, it was hypothesized that time dependence in diffusion MRI may predict tissue outcome in ischemic stroke. METHODS: Diffusion MRI data were acquired with multiple diffusion times in five non-reperfused patients at 2, 9, and 100 days after stroke onset. Maps of "rate of kurtosis change" (k), mean kurtosis, ADC, and fractional anisotropy were derived. The ADC maps defined lesions, normal-appearing tissue, and the lesion tissue that would either be infarcted or remain viable by day 100. Diffusion parameters were compared (1) between lesions and normal-appearing tissue, and (2) between lesion tissue that would be infarcted or remain viable. RESULTS: Positive values of k were observed within stroke lesions on day 2 (P = .001) and on day 9 (P = .023), indicating diffusional exchange. On day 100, high ADC values indicated infarction of 50 ± 20% of the lesion volumes. Tissue infarction was predicted by high k values both on day 2 (P = .026) and on day 9 (P = .046), by low mean kurtosis values on day 2 (P = .043), and by low fractional anisotropy values on day 9 (P = .029), but not by low ADC values. CONCLUSIONS: Diffusion time dependence predicted tissue outcome in ischemic stroke more accurately than the ADC, and may be useful for predicting reperfusion benefit.
Ning L, Szczepankiewicz F, Nilsson M, Rathi Y, Westin C-F. Probing Tissue Microstructure by Diffusion Skewness Tensor Imaging. Sci Rep. 2021;11 (1) :135.Abstract
Probing the cellular structure of in vivo biological tissue is a fundamental problem in biomedical imaging and medical science. This work introduces an approach for analyzing diffusion magnetic resonance imaging data acquired by the novel tensor-valued encoding technique for characterizing tissue microstructure. Our approach first uses a signal model to estimate the variance and skewness of the distribution of apparent diffusion tensors modeling the underlying tissue. Then several novel imaging indices, such as weighted microscopic anisotropy and microscopic skewness, are derived to characterize different ensembles of diffusion processes that are indistinguishable by existing techniques. The contributions of this work also include a theoretical proof that shows that, to estimate the skewness of a diffusion tensor distribution, the encoding protocol needs to include full-rank tensor diffusion encoding. This proof provides a guideline for the application of this technique. The properties of the proposed indices are illustrated using both synthetic data and in vivo data acquired from a human brain.
Szczepankiewicz F, Sjölund J, Dall'Armellina E, Plein S, Schneider JE, Teh I, Westin C-F. Motion-Compensated Gradient Waveforms for Tensor-Valued Diffusion Encoding by Constrained Numerical Optimization. Magn Reson Med. 2021;85 (4) :2117-26.Abstract
PURPOSE: Diffusion-weighted MRI is sensitive to incoherent tissue motion, which may confound the measured signal and subsequent analysis. We propose a "motion-compensated" gradient waveform design for tensor-valued diffusion encoding that negates the effects bulk motion and incoherent motion in the ballistic regime. METHODS: Motion compensation was achieved by constraining the magnitude of gradient waveform moment vectors. The constraint was incorporated into a numerical optimization framework, along with existing constraints that account for b-tensor shape, hardware restrictions, and concomitant field gradients. We evaluated the efficacy of encoding and motion compensation in simulations, and we demonstrated the approach by linear and planar b-tensor encoding in a healthy heart in vivo. RESULTS: The optimization framework produced asymmetric motion-compensated waveforms that yielded b-tensors of arbitrary shape with improved efficiency compared with previous designs for tensor-valued encoding, and equivalent efficiency to previous designs for linear (conventional) encoding. Technical feasibility was demonstrated in the heart in vivo, showing vastly improved data quality when using motion compensation. The optimization framework is available online in open source. CONCLUSION: Our gradient waveform design is both more flexible and efficient than previous methods, facilitating tensor-valued diffusion encoding in tissues in which motion would otherwise confound the signal. The proposed design exploits asymmetric encoding times, a single refocusing pulse or multiple refocusing pulses, and integrates compensation for concomitant gradient effects throughout the imaging volume.
Behjat H, Westin C-F, Aganj I. Cortical Surface-Informed Volumetric Spatial Smoothing of fMRI Data via Graph Signal Processing. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021 :3804-8.Abstract
Conventionally, as a preprocessing step, functional MRI (fMRI) data are spatially smoothed before further analysis, be it for activation mapping on task-based fMRI or functional connectivity analysis on resting-state fMRI data. When images are smoothed volumetrically, however, isotropic Gaussian kernels are generally used, which do not adapt to the underlying brain structure. Alternatively, cortical surface smoothing procedures provide the benefit of adapting the smoothing process to the underlying morphology, but require projecting volumetric data on to the surface. In this paper, leveraging principles from graph signal processing, we propose a volumetric spatial smoothing method that takes advantage of the gray-white and pial cortical surfaces, and as such, adapts the filtering process to the underlying morphological details at each point in the cortex.
Di Biase MA, Cetin-Karayumak S, Lyall AE, Zalesky A, Cho KIK, Zhang F, Kubicki M, Rathi Y, Lyons MG, Bouix S, et al. White Matter Changes in Psychosis Risk Relate to Development and Are Not Impacted by the Transition to Psychosis. Mol Psychiatry. 2021;26 (11) :6833-44.Abstract
Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and CHR-U groups displayed higher FAT in adolescence, and 4% lower FAT by 30 years of age compared to controls. Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p < 0.05). Prospective analysis in CHR-P did not reveal a significant impact of illness onset on regional FAT or FW, suggesting that transition to psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis-regardless of transition outcome-is characterized by subtle age-related white matter changes that occur in tandem with development.
Slator PJ, Palombo M, Miller KL, Westin C-F, Laun F, Kim D, Haldar JP, Benjamini D, Lemberskiy G, de Almeida Martins JP, et al. Combined Diffusion-Relaxometry Microstructure Imaging: Current Status and Future Prospects. Magn Reson Med. 2021;86 (6) :2987-3011.Abstract
Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T 1 , T 2 , and T 2 ∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.
Langbein BJ, Szczepankiewicz F, Westin C-F, Bay C, Maier SE, Kibel AS, Tempany CM, Fennessy FM. A Pilot Study of Multidimensional Diffusion MRI for Assessment of Tissue Heterogeneity in Prostate Cancer. Invest Radiol. 2021;56 (12) :845-53.Abstract
OBJECTIVES: The objectives of this exploratory study were to investigate the feasibility of multidimensional diffusion magnetic resonance imaging (MddMRI) in assessing diffusion heterogeneity at both a macroscopic and microscopic level in prostate cancer (PCa). MATERIALS AND METHODS: Informed consent was obtained from 46 subjects who underwent 3.0-T prostate multiparametric MRI, complemented with a prototype spin echo-based MddMRI sequence in this institutional review board-approved study. Prostate cancer tumors and comparative normal tissue from each patient were contoured on both apparent diffusion coefficient and MddMRI-derived mean diffusivity (MD) maps (from which microscopic diffusion heterogeneity [MKi] and microscopic diffusion anisotropy were derived) using 3D Slicer. The discriminative ability of MddMRI-derived parameters to differentiate PCa from normal tissue was determined using the Friedman test. To determine if tumor diffusion heterogeneity is similar on macroscopic and microscopic scales, the linear association between SD of MD and mean MKi was estimated using robust regression (bisquare weighting). Hypothesis testing was 2 tailed; P values less than 0.05 were considered statistically significant. RESULTS: All MddMRI-derived parameters could distinguish tumor from normal tissue in the fixed-effects analysis (P < 0.0001). Tumor MKi was higher (P < 0.05) compared with normal tissue (median, 0.40; interquartile range, 0.29-0.52 vs 0.20-0.18; 0.25), as was tumor microscopic diffusion anisotropy (0.55; 0.36-0.81 vs 0.20-0.15; 0.28). The MKi could not be predicted (no significant association) by SD of MD. There was a significant correlation between tumor volume and SD of MD (R2 = 0.50, slope = 0.008 μm2/ms per millimeter, P < 0.001) but not between tumor volume and MKi. CONCLUSIONS: This explorative study demonstrates that MddMRI provides novel information on MKi and microscopic anisotropy, which differ from measures at the macroscopic level. MddMRI has the potential to characterize tumor tissue heterogeneity at different spatial scales.
Behjat H, Aganj I, Abramian D, Eklund A, Westin C-F. Characterization of Spatial Dynamics of Fmri Data in White Matter Using Diffusion-Informed White Matter Harmonics. Proc IEEE Int Symp Biomed Imaging. 2021;2021 :1586-90.Abstract
In this work, we leverage the Laplacian eigenbasis of voxel-wise white matter (WM) graphs derived from diffusion-weighted MRI data, dubbed WM harmonics, to characterize the spatial structure of WM fMRI data. Our motivation for such a characterization is based on studies that show WM fMRI data exhibit a spatial correlational anisotropy that coincides with underlying fiber patterns. By quantifying the energy content of WM fMRI data associated with subsets of WM harmonics across multiple spectral bands, we show that the data exhibits notable subtle spatial modulations under functional load that are not manifested during rest. WM harmonics provide a novel means to study the spatial dynamics of WM fMRI data, in such way that the analysis is informed by the underlying anatomical structure.
Guder S, Pasternak O, Gerloff C, Schulz R. Strengthened Structure-Function Relationships of the Corticospinal Tract by Free Water Correction After Stroke. Brain Commun. 2021;3 (2) :fcab034.Abstract
The corticospinal tract is the most intensively investigated tract of the human motor system in stroke rehabilitative research. Diffusion-tensor-imaging gives insights into its microstructure, and transcranial magnetic stimulation assesses its excitability. Previous data on the interrelationship between both measures are contradictory. Correlative or predictive models which associate them with motor outcome are incomplete. Free water correction has been developed to enhance diffusion-tensor-imaging by eliminating partial volume with extracellular water, which could improve capturing stroke-related microstructural alterations, thereby also improving structure-function relationships in clinical cohorts. In the present cross-sectional study, data of 18 chronic stroke patients and 17 healthy controls, taken from a previous study on cortico-cerebellar motor tracts, were re-analysed: The data included diffusion-tensor-imaging data quantifying corticospinal tract microstructure with and without free water correction, transcranial magnetic stimulation data assessing recruitment curve properties of motor evoked potentials and detailed clinical data. Linear regression modelling was used to interrelate corticospinal tract microstructure, recruitment curves properties and clinical scores. The main finding of the present study was that free water correction substantially strengthens structure-function associations in stroke patients: Specifically, our data evidenced a significant association between fractional anisotropy of the ipsilesional corticospinal tract and its excitability ( = 0.001, adj.  = 0.54), with free water correction explaining additional 20% in recruitment curve variability. For clinical scores, only free water correction leads to the reliable detection of significant correlations between ipsilesional corticospinal tract fractional anisotropy and residual grip ( = 0.001, adj.  = 0.70) and pinch force ( < 0.001, adj.  = 0.72). Finally, multimodal models can be improved by free water correction as well. This study evidences that corticospinal tract microstructure directly relates to its excitability in stroke patients. It also shows that unexplained variance in motor outcome is considerably reduced by free water correction arguing that it might serve as a powerful tool to improve existing models of structure-function associations and potentially also outcome prediction after stroke.
He J, Zhang F, Xie G, Yao S, Feng Y, Bastos DCA, Rathi Y, Makris N, Kikinis R, Golby AJ, et al. Comparison of Multiple Tractography Methods for Reconstruction of the Retinogeniculate Visual Pathway Using Diffusion MRI. Hum Brain Mapp. 2021;42 (12) :3887-904.Abstract
The retinogeniculate visual pathway (RGVP) conveys visual information from the retina to the lateral geniculate nucleus. The RGVP has four subdivisions, including two decussating and two nondecussating pathways that cannot be identified on conventional structural magnetic resonance imaging (MRI). Diffusion MRI tractography has the potential to trace these subdivisions and is increasingly used to study the RGVP. However, it is not yet known which fiber tracking strategy is most suitable for RGVP reconstruction. In this study, four tractography methods are compared, including constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, and multi-fiber (UKF-2T) and single-fiber (UKF-1T) unscented Kalman filter (UKF) methods. Experiments use diffusion MRI data from 57 subjects in the Human Connectome Project. The RGVP is identified using regions of interest created by two clinical experts. Quantitative anatomical measurements and expert anatomical judgment are used to assess the advantages and limitations of the four tractography methods. Overall, we conclude that UKF-2T and iFOD1 produce the best RGVP reconstruction results. The iFOD1 method can better quantitatively estimate the percentage of decussating fibers, while the UKF-2T method produces reconstructed RGVPs that are judged to better correspond to the known anatomy and have the highest spatial overlap across subjects. Overall, we find that it is challenging for current tractography methods to both accurately track RGVP fibers that correspond to known anatomy and produce an approximately correct percentage of decussating fibers. We suggest that future algorithm development for RGVP tractography should take consideration of both of these two points.

Pages