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Abstract. This work presents a supra-threshold fiber cluster (STFC)
analysis that leverages the whole brain fiber geometry to enhance sta-
tistical group difference analysis. The proposed method consists of (1)
a study-specific data-driven tractography parcellation to obtain white
matter (WM) tract parcels according to the WM anatomy and (2) a
nonparametric permutation-based STFC test to identify significant dif-
ferences between study populations (e.g. disease and healthy). The basic
idea of our method is that a WM parcel’s neighborhood (parcels with
similar WM anatomy) can support the parcel’s statistical significance
when correcting for multiple comparisons. The method is demonstrated
by application to a multi-shell diffusion MRI dataset from 59 individuals,
including 30 attention deficit hyperactivity disorder (ADHD) patients
and 29 healthy controls (HCs). Evaluations are conducted using both
synthetic and real data. The results indicate that our STFC method
gives greater sensitivity in finding group differences in WM tract parcels
compared to several traditional multiple comparison correction methods.

1 Introduction

Computational neuroimaging methods have aroused interest in identifying group
differences in white matter (WM) via diffusion magnetic resonance imaging
(dMRI). Traditional methods rely on techniques such as voxel-based morphom-
etry (VBM) [2] and tract-based spatial statistics (TBSS) [24] for voxel-based
analyses. Tractography-based analysis, on the other hand, has enabled measure-
ment of macrostructural WM properties of specific subpopulations of fibers [5].
In this work, we focus on identifying WM group differences using whole brain
tractography.
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A standard tractography-based group difference analysis includes first select-
ing a tract of interest (e.g. the corpus callosum) and then comparing groups
to find statistical differences in WM diffusion features (e.g. anisotropy), either
using feature mean values [1] or along-tract measures [6,7,9]. These studies sug-
gest that fibers with similar WM anatomy (fiber geometric trajectory) in gen-
eral share similar diffusion properties. However, they are generally limited to a
small number of selected tracts. Another strategy, which can efficiently identify
multiple tracts, is to establish the tract correspondence directly based on fiber
geometry [17]. One recent work has applied this strategy to identify 30 tracts (a
subset of the WM, e.g. only corticospinal tract but not full corona radiata) and
performed statistical analysis in the whole brain [28]. Our method is based on
a study-specific whole brain WM parcellation into more regions (a total of 1416
WM parcels from all input tractography) and hence can allow identification of
potential group differences more specific to local WM anatomy.

For group comparison, a hypothesis test (e.g. Student’s t-test) is normally
used to identify group differences, followed by multiple comparison correction
(e.g. false discovery rate (FDR) [4] and Bonferroni [10] methods) for corrected
statistical significance. Since these commonly-used correction methods can be
less sensitive in finding significance, voxel-based multiple comparison correction
has been conducted in a cluster-thresholding manner that utilizes spatial neigh-
borhoods to boost belief in extended cluster areas [12]. Studies using voxel-
cluster-thresholding methods have found WM group differences [19,23]. One
work also applied the cluster-thresholding method to identify group differences
in fiber segments [26]. However, we found no related work has been conducted
to identify tractography-based group differences for whole brain analysis.

In light of the above, we propose a supra-threshold fiber cluster (STFC)
method to identify WM group differences using whole brain tractography. The
novelty is that, for the first time, the proposed method leverages the whole brain
fiber geometry during the statistical analysis of tractography. Specifically, we
define a WM parcel neighborhood according to the WM anatomy and we propose
a novel method that uses these WM neighborhoods for determining statistical
significance. The method uses a study-specific data-driven WM parcellation for
parcel neighborhood construction (Sect. 2.2). The STFC test then leverages the
neighborhoods to identify fiber clusters of multiple WM tract parcels for statisti-
cal significance with multiple comparison correction (Sect. 2.4). We demonstrate
our method by application to a multi-shell dMRI dataset from attention deficit
hyperactivity disorder (ADHD) patients and healthy controls (HCs).

2 Methods

2.1 Dataset

We used a multi-shell (b values of 1000/2000/3000 s/mm2) diffusion weighted
imaging (DWI) dataset from 59 individuals (30 ADHD, 7 females and 23 males,
age: 10.6 ± 1.7 years; 29 HC, 10 females and 19 males, age: 10.7 ± 1.7 years).
The two groups were matched for age and socioeconomic status (SES). DWI
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data were acquired using a multi-slice acquisition (x2) at spatial resolution of
2 × 2 × 2 mm3 with 70 gradient directions, and then processed using a semi-
automated quality control to remove gradients with signal drop and to correct
head motion.

We conducted whole brain tractography using the unscented Kalman fil-
ter method [21,22]. Tractography was seeded 5 times per voxel and return-to-
the-origin probability (RTOP) was measured with a two tensor biexponential
model [20] at each point while tracking. The RTOP estimates the net dis-
placement of water molecules between the application of two diffusion gradi-
ents and it is known to be sensitive to the anisotropy of WM tissue [13]. We
chose RTOP because it is known to be sensitive to the anisotropy of WM tissue
and may increase pathophysiological specificity compared to traditional diffusion
anisotropy measures, e.g. fractional anisotropy (FA) [3,18]. Therefore, we used
this measurement to explore potential changes in WM anisotropy in ADHD. We
performed diffusion MRI tractography visualization in 3D Slicer (www.slicer.org)
via the SlicerDMRI project (dmri.slicer.org).

2.2 Data-Driven WM Parcellation and WM Parcel Neighborhood

Whole brain WM parcellation was conducted using a data-driven pipeline
according to the common WM anatomy from the whole population. In brief,
the parcellation started with a simultaneous joint alignment of tractography
across all subjects (using affine then b-spline transforms) (Fig. 1a) [15]. Next,
we learned a study-specific data-driven groupwise WM parcellation (atlas) using
a spectral clustering of pairwise fiber trajectory distances across all subjects
(Fig. 1b) [16]. Then, we applied the study-specific parcellation to each individ-
ual subject (Fig. 1c) [16]. Valid parcels were identified as those that passed a
nonparametric one-tailed sign test in the population, based on fiber numbers
in each parcel, as in [8]. We obtained a total of 1416 valid hemispheric and
commissural parcels.

Parcel neighborhoods (Fig. 1d) were constructed according to the mean of
the pairwise fiber distances between parcels in the atlas, i.e. Dp =

∑
I

∑
J dij

IJ ,
where dij is the fiber pair distance and I and J are the total numbers of fibers
in the two parcels. A pair of parcels that had Dp smaller than a user-given
distance threshold Td were considered to be neighbors. We applied the mean
closest point fiber distance [16] to measure dij , the same distance used in the
spectral clustering. In this way, the neighborhood could capture the anatomical
similarity between the parcels.

http://www.www.slicer.org
http://www.dmri.slicer.org
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Fig. 1. Study-specific data-driven WM parcellation. (a) Tractography alignment using
groupwise tractography registration, where color indicates subject. (b) Study-specific
groupwise WM parcellation (atlas) (left) and example subject-specific tractography
parcellation (right). Fibers from different parcels are colored differently, where simi-
lar colors represent white-matter-anatomy-similar fibers. (c) Example atlas WM tract
parcels (left) and the corresponding subject-specific WM tract parcels (right). (d)
Example neighbors of the red tract parcel include the yellow and the blue parcels
but not the more distant green one.

2.3 Group Difference at Individual Parcel Level

We performed a null hypothesis test for each individual parcel to find the parcel-
level WM difference. Specifically, we measured the median of the RTOP values
of all points in each parcel, i.e. MRTOP . An one-tailed Student’s t-test was then
performed under null hypothesis H0 : μHC(MRTOP ) ≤ μADHD(MRTOP ), as
studies in ADHD widely suggest decreased diffusion anisotropy [11]. We consid-
ered the parcels with p-value <0.05 as the ones with parcel-level differences.

2.4 Supra-Threshold Fiber Cluster Test

Then, the parcel-level differences were tested for significance in a multiple com-
parison correction using a permutation-based STFC test. This is similar to the
process in a voxel-image-based supra-threshold cluster test [12]. However, our
method leverages the fiber spatial relationships from the whole brain fiber geom-
etry to build the parcel neighborhoods, while a voxel-image-based method relies
on voxel spatial neighborhoods. In detail, an STFC was defined as a cluster
of multiple parcels with parcel-level differences, where each parcel neighbored
at least one other parcel(s) in the cluster (under the distance threshold Td).
The STFC test performed a nonparametric permutation test using a summary
statistic of maximal STFC size (maxSTFCS). N = 10000 permutations were
performed in all experiments, resulting in a distribution of maxSTFCS (the
null distribution) that enabled computation of corrected STFC significance.
Algorithm 1 shows the pseudocode of the method. Specifically, we first com-
puted a histogram of maxSTFCS across multiple permutation runs (lines 1 to 5).
Then, for each STFC from the correctly labeled groups, its corrected significance
value was computed by comparing its STFC size (STFCS ) to the maxSTFCS
histogram (lines 6 to 11).
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Algorithm 1. Supra-threshold Fiber Cluster Test
1: for each permutation run in [1, N ] do
2: Randomly permute group labels of all subjects (0 for ADHD, 1 for HC).
3: Identify parcels with group difference at parcel-level in the permuted data.
4: Extract all STFCs and record the maxSTFCS .
5: Calculate the histogram of maxSTFCS to produce the null distribution.
6: Identify parcels with group difference at parcel-level in the correctly labeled data.
7: Extract all STFCs and compute STFCS for each parcel.
8: for each STFC do
9: Locate its STFCS in the maxSTFCS histogram.

10: Obtain the number of permutations with maxSTFCS ≥ STFCS(p) as N(p).
11: Compute the corrected significance value as (N(p) + 1)/(N + 1).

3 Experimental Results

3.1 Synthetic Data

We first illustrate our method on synthetic data. To simplify the assessment
and tractography visualization, we created a realistic synthetic dataset with true
group difference in the corpus callosum (CC), generated as follows. We identified
a total of 34 CC parcels from the whole brain parcellation, as shown in Fig. 2a.
For each CC parcel, we added white Gaussian noise (signal-to-noise ratio at 1
[25]) to the actual measured features of all HC subjects. Repeating this process
twice generated two synthetic groups of G1 and G2, each with 29 subjects. We
then modified 15 CC parcels-of-interest to have true group difference by adding
synthetic feature changes to the G2 subjects. For each of the 15 parcels, we
decreased its group mean MRTOP values in G2 (as a percent of its original feature
mean) for a null hypothesis test: H0 : μG1(MRTOP ) ≤ μG2(MRTOP ). These 15
parcels were selected to form 3 different synthetic ground truth clusters (with
sizes of 4, 5 and 6, as shown in Figs. 2b–d). Larger synthetic feature changes led
to the parcels-of-interest showing more significant group differences. Then, the
evaluation goal was to test if a method could correctly identify the parcels with
true significance, even when the added change was small.

Comparisons were conducted among the uncorrected t-test, the proposed
STFC method, a standard permutation test (Perm-T, N = 10000) that used the
minimal t-test-based p-value of all parcels for the summary statistic (as applied
in [28]), and two traditional FDR and Bonferroni multiple comparison correction
methods. The same significance level of α = 0.05 was used for all compared
methods. Figure 2b displays the number of significantly different parcels that
were correctly identified in each method. For the STFC method, we displayed
the result with Td = 44 mm. As shown in Fig. 2c, the reasonable range for Td

in the synthetic data testing was 44 to 47 mm. This range corresponded to the
settings that could identify the 3 ground truth clusters, as illustrated in Fig. 2d.
We note that in the STFC experiment we considered a parcel as misidentified
if it belonged to a STFC including parcels from more than one ground truth
cluster.
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(a) 

(b) 

(c) 

1 2 3 4 

(d) T-test (uncorrected)
STFC
Perm-T
Bonferroni
FDR

Fig. 2. Synthetic data experiment: (a) All CC parcels (a1, size 34) and 15 CC parcels-
of-interest (a2, a3 and a4 cluster, with sizes of 4, 5 and 6 respectively) with synthetic
group differences. (b) Number of correctly identified CC parcels, versus the level of
synthetic group difference. (c) Mean number of correctly identified parcels across the
different synthetic changes (as in b), versus the distance threshold Td. Td lower than
44mm could not identify all ground truth parcels, while Td larger than 47 mm grouped
inter-cluster parcels together. (Note that Td should be higher than the within-parcel
mean fiber distance, which was 27.9 ± 5.3 mm.) (d) Distributions of the parcel pair
distance Dp from intra-cluster (blue) and inter-cluster (orange) among the ground
truth STFCs (a2–a4).

3.2 Real Data

Next, we show experimental results on the real data for the corpus callosum1 and
the whole brain. A one-tailed t-test was first performed with the null hypothe-
sis H0 : μHC(MRTOP ) ≤ μADHD(MRTOP ). Multiple comparison correction was
then conducted using the STFC, the Perm-T, the FDR and the Bonferroni meth-
ods respectively, at a significance level of α = 0.05. For the STFC method, the
results were reported at the smallest Td where we could identify significances.

Corpus Callosum: 8 of the 34 CC parcels passed the initial t-test. While
none survived the Perm-T, the FDR or the Bonferroni methods, a STFC of 4
parcels (Fig. 3a) was identified using the proposed method when Td = 32 mm.
The corrected significance value of the identified STFC was 0.0271 as illustrated
in Fig. 3b and the group mean feature values of the parcels are shown in Fig. 3c.

Whole Brain: For the whole brain parcellation of a total of 1416 parcels,
654 had a p-value smaller than 0.05 in the initial parcel-level t-test. The FDR
and the Bonferroni methods did not find any significantly different parcels
between the groups. The Perm-T method identified one individual significant
parcel (corrected p-value 0.0272) connecting the middle precentral gyrus to the
1 This tract’s subdivisions are often studied, so we chose it as an illustrative example.
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(a) (b) (c) 

Fig. 3. Real data experiment for the corpus callosum: (a) The STFC consisting of 4
CC parcels identified with significant group difference. (b) 270 permutation tests had
maxSTFCS ≥ 4, leading to the corrected significance value of 271/10001 = 0.0271.
(c) Comparison of MRTOP values per identified parcel, plotted in sorted order.

(c) (b) (a) 

Fig. 4. Real data experiment for the whole brain WM: (a) The STFC consisting of
15 parcels identified with significant group difference. (b) 455 permutation tests had
maxSTFCS ≥ 15, leading to the corrected significance value of the identified STFC
456/10001=0.0456. (c) Comparison of MRTOP values per identified parcel, plotted in
sorted order.

supra-marginal and the superior-parietal gyri in the right hemisphere. Our
method identified one significant STFC of 15 WM parcels when Td = 24 mm,
which located in the temporal and occipital lobes (Fig. 4a). The corrected sig-
nificance value of the identified STFC was 0.0456 as illustrated in Fig. 4b. A
comparison of the group mean feature values is given in Fig. 4c.

4 Discussion and Conclusion

We tested our method on a synthetic dataset with known group differences. The
results showed that the STFC method was more sensitive to detect the ground
truth group differences, while the Perm-T, FDR and the Bonferroni methods
could only find the significance when there were large differences (over 15%
change of the group mean feature value). As for the experiments on the real data,
in CC we found a significantly different STFC of 4 WM parcels connecting to the
superior-parietal gyri and the precuneus, with decreased median RTOP values
in the ADHD group. For the whole brain WM analysis, our method identified 15
parcels from a STFC with significant group difference in the right temporal and
occipital lobes, which have been previously reported to be affected in ADHD
[14,27]. These parcels had lower median RTOP values in the ADHD group when
compared to the HC group, suggesting potentially reduced WM anisotropy in
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ADHD. We did not find any significance using the FDR or Bonferroni methods in
two real data tests. One parcel that potentially belonged to the anterior segment
of right arcuate fasciculus was identified from the whole brain using the Perm-T
method, but no parcel survived in the CC Perm-T analysis.

The STFC method had a parameter of distance threshold Td that was used
to form the WM parcel neighborhood. Our experiments using the synthetic data
showed that too large or too small Td values found fewer true significant parcels
(Fig. 2c). Given the synthetic ground truth clusters, small Td values (e.g. Td < 25
mm, Fig. 2d) were not able to form any neighborhoods within a cluster, while
larger values tended to group ground truth clusters together (e.g. Td > 65 mm,
Fig. 2d). For our real data tests, we applied the minimal setting of Td that could
find a significance. This allowed us to identify the parcels that were most similar
to each other in terms of their WM anatomy. On the other hand, increasing
Td could help to find more WM structures. For example, in the whole brain
analysis given Td = 25 mm, we identified a larger significant STFC of 24 parcels
that included the parcels from Td = 24 mm and extended to the inferior parietal
lobe.

In this paper, we have presented a novel STFC analysis to identify WM
group differences using whole brain tractography. Experimental results suggest
that our method in general is more sensitive for identifying WM group differences
when compared to several traditional multiple comparison correction methods.
Similar to voxel-cluster-thresholding analyses, the proposed method aims to find
large clusters of WM parcels with significance; thus it could potentially miss
some significantly different parcels located in small neighborhoods, e.g. the one
individual significant parcel identified in the standard permutation test.
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